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ABSTRACT
Many multi-agent coordination problems can be understood
as autonomous local choices between a finite set of options,
with each local choice undertaken simultaneously without
explicit coordination between decision-makers, and with a
shared goal of achieving a desired global state or states.
Examples of such problems include classic consensus prob-
lems between nodes in a distributed computer network and
the adoption of competing technology standards. We model
such problems as a multi-round game between agents hav-
ing flags of different colours to represent the finite choice
options, and all agents seeking to achieve global patterns of
colours through a succession of local colour-selection choices.

We generalise and formalise the problem, proving results
for the probabilities of achievement of common desired global
states when these games are undertaken on bipartite graphs,
extending known results for non-bipartite graphs. We also
calculate probabilities for the game entering infinite cycles of
non-convergence. In addition, we present a game-theoretic
approach to the problem that has a mixed-strategy Nash
equilibrium where two players can simultaneously flip the
colour of one of the opponent’s nodes in the bipartite graph
before or during a flag-coordination game.

Keywords
Consensus Protocols, Graph Colouring, Flag Coordination,
Multi-agent Coordination

1. INTRODUCTION
Many multi-agent coordination problems involve a collec-

tion of agents choosing autonomously from the same finite
set of options using only local information, while sharing a
common desire for a global state. For example, users of a
new technology choosing between alternative technical stan-
dards each face the same choice of possible options, but make
their choices without necessarily knowing the choices of oth-
ers. In the case of network goods [14], the utilities of each
option to any one user depend on the choices made by the
other users; in the classic example, a fax machine is only of
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value to one company if the organisations with which that
company communicates also have fax machines. Hence, po-
tential adopters may choose the option they believe others
will choose [15]. Even for non-technology products, such
as clothes and food, consumers may gain additional bene-
fits from purchasing products or services which they believe
have been chosen (or not chosen) by other consumers, over
and above any perceived benefits of the good or service itself.

In these cases, agents may wish to all adopt the same
choice as one another, so that the desired shared global state
is one of consensus. In other cases, the global state may be
a different pattern, for example, a sequence of alternating
states. For instance, in a robot bucket brigade, each robot
in a line would need to be either in a giving state or in a
receiving state at each time step, and in the complementary
state to each of its neighbours at that time step. At each
subsequent time step, each robot would need to switch to
the other state.

We can model such situations as an abstract multi-agent
game of flag-colouring, where the different flag colours rep-
resent the different decision-options each agent faces. While
there are applications where the desired global state of the
system needs to be achieved in a single step [10], we consider
only cases where the agents proceed in a sequence of rounds,
making individual choices simultaneously at each step. If at
any step, a desired global state is achieved, the game ends.
Otherwise, it continues.

Because there are many possible variations on this general
situation, in this paper we make certain assumptions to fix
ideas. These assumptions are:

1. We assume a finite set of autonomous agents, with a
shared clock, and with each empowered to decide be-
tween a finite set of decision options at each successive
time-step. These options are the same for every agent.
Decisions are made synchronously, at successive time
steps. For simplicity, the decision options are repre-
sented by flags of different colours.

2. Agents are connected via a network, and after each
time-step each agent is able to see the decisions made
by its immediate neighbours, i.e., those agents to whom
it is directly linked. No agent is able to see beyond
that. Agents do not communicate in any other way
with one another.

3. Agents do know the decision-option they themselves
choose at each time-step but they are not assumed to
have any memory of previous choices, of themselves or
of other agents, or of previous global states.



4. Agents are assumed to know the network topology and
their place within it.

5. Agents all share a desired set of global goal states (pos-
sibly just one state) for the collective set of agents.
This set of shared global goal states could be, for ex-
ample, consensus (all agents choose the same decision-
option) or a global state in which no two connected
agents have made the same choice (e.g., alternating
flag colours).

6. We assume that, between one time-step and the next,
agents are not informed whether or not their previous
decisions achieved one of the desired goal states. In-
stead, in this work, the individual agent decision algo-
rithms we consider result in the global goal states being
stable. If and when a stable goal state is achieved, we
say the sequential decision process ends. Otherwise,
the process continues, possibly for ever.

7. Agents are assumed to be well-intentioned (i.e., not
malicious nor whimsical), and bug-free.

Example 1 (Motivating Example). Consider a set
of twenty agents playing a colouring game in a circle, with
the initial configuration as shown in figure 1. At each round,

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

Which colour is
most likely to win

this consensus
game?

Figure 1: Consensus Game
on a Cycle with 3 Colours.

each node chooses one
neighbour at random
and copies its colour.
For example, node v5,
for the next round,
is choosing blue with
50% probability, and
red otherwise. At
the same time, node
v7 will be turning red
with probability 1. All
changes are made syn-
chronously. We say
that the game ends ei-
ther when there is only
one colour left or when
the game is trapped in
an infinite loop (if odd nodes are coloured with one colour
and the even ones with another). In these conditions, which
of the three colours is most likely to win this game?1

In this paper we articulate a formal model for a flag-colouring
game based on these assumptions, with the purpose of an-
swering the following questions:

1. Given a defined network topology, a defined decision
algorithm, a defined global goal state, and a random
initial state, what is the probability that the sequential
decision process will converge to a global goal state?

2. Given a defined network topology, a defined decision
algorithm, a defined set of global goal states, and a ran-
dom initial state, what is the expected number of de-
cision rounds (time-steps) to reach a global goal state?

3. Given a defined network topology, a defined decision
algorithm, a defined global goal state, and a random
initial state, what is the probability that the sequential

1See Section 5 for the solution.

decision process will enter an infinite cycle that does
not converge to a global goal state (i.e., an infinite
cycle of non-convergence)?

4. What is the influence of the network topology on the
probability and expected duration of achieving a global
goal state?

5. What is the influence of the decision algorithm on the
probability and expected duration of achieving a global
goal state?

Building on prior work on general graphs by Hassin and
Peleg [7], we present results for the first three questions in
this paper for bipartite graphs. These are graphs where the
nodes may be divided naturally into two mutually-exclusive
types, for example, buyers and sellers in an online market-
place. The solution to the problem in Example 1 is interest-
ing precisely because the cycle in that problem is a bipartite
graph. To a limited extent, we also explore Questions 4 and
5. These questions will be the subject of future work.

In addition to this analysis, we present a game-theoretic
approach to the situation where two players can simultane-
ously flip the colour of one of their opponents’ nodes in the
bipartite graph before or during a flag-coordination game,
in Section 3. This game has a mixed-strategy Nash equilib-
rium.

2. FLAG COORDINATION GAMES

2.1 Notation and Basic Definitions
We let G denote a finite, undirected graph G = (V,E) in

which V is the set of nodes of the graph and E stands for the
set of edges of G. If G is a bipartite graph, then we denote
it as G = (U,W,E) in which U and W represent the two
partitions of the nodes in G, this is, U ∪W = V , U ∩W = ∅
and ∀{v1, v2} ∈ E, either v1 ∈ U and v2 ∈W or v2 ∈ U and
v1 ∈W .

We define C = XV the set of functions s : V → X that
colour the graph G = (V,E), where X is a given set of
colours. We say that s is a proper colouring of the nodes in
G if no neighbouring vertices are assigned the same colour
under s.

2.2 Flag Coordination Games
We now propose an abstract framework in which we can

study coordination in multi-agent systems in a broader way.
A flag coordination game can be seen as a multi-round game
between agents having flags of different colours to represent
the finite choice options, and all agents seeking to achieve
a global state or states of colours through a succession of
local colour-selection choices. We start by giving a general
definition of such games.

Definition 1 (Flag Coordination Game). Let G,
G = (V,E), be a graph and β : V → P(X) be a function
that associates each vertex to a particular set of colours, or
flags, at its disposal. Let also φ : V → P(V ) be the function
that determines the visibility of each node v, i.e., the set of
vertices (and their labels) whose colours can be observed by
v at at any time. Finally, the set C = XV is the set of
functions that colour V . Let Γ = {γ1, . . . , γn, . . . } ⊂ C be
the set of goal configurations of such game. Note that Γ is
public and common to all nodes.



Let s0 ∈ C be a configuration when the game starts. This
game is played in turns and in each of these turns, nodes
decide their own colour synchronous and independently (we
also include ’no action’ as a possible decision option). For
each v ∈ V , there is an algorithm αv, where αv depends on
β(v) and φ(v), that makes a decision at each round. We call
A the collection of all such algorithms.

In sum, we define the tuple F = (G,X, β, C,Γ,A, φ) as
the set of rules of a flag coordination game, the pair (F , s0)
as the initial configuration of a game2 and, finally, the
infinite sequence of rounds S = (s0, . . . , sk, . . . ) as the trace
of a game.

Given a set of rules of a flag coordination game, we might
be interested, for example, in the expected number of rounds
until a goal is reached given an initial configuration, or even
in the probability that a given game ends successfully: that
it eventually reaches a configuration γ ∈ Γ. One particular
example of such games is where the set Γ contains all the
proper colourings of a given graph G given a set of colours
X. For a given node v ∈ V , a simple possible algorithm αv is
for v to choose randomly among the least common colours of
its neighbours. Note this particular algorithm might not be
stable over proper colourings or efficient in terms of number
of rounds for a goal to be achieved.

Example 2 (The Muddy Children Problem). The
commonly-studied Muddy Children Problem [2] can now be
framed as a flag coordination game as long as we allow nodes
to select the option of ‘no action’ in any round. We can
have G = (V,E) as, for instance, the complete graph with
n nodes, where n is the number of children in the game.
The set of colours is X = {mud, no-mud, mud-detected}.
The initial configuration may have the nodes coloured with
any of the two first colours, but we only allow the children
the options of ‘mud-detected’ and ‘no-action’ (note that ‘no-
action’ is not a colour, but the choice for the node to not
change their current colour). We need to restrict the visi-
bility of each agent to all other agents except themselves, so
that: φ(v) = V \ {v}, ∀v ∈ V .

Our desired algorithm for v is ‘wait’ (i.e., take no action)
until round i, where i is the number of ‘mud’ nodes that v
can see. If no agent changes to ‘mud-detected’ until round
i, then chose ‘mud-detected’ for round i+ 1. In order to be
consistent with our model, we have to define a public set of
goal states Γ. Since we cannot simply give away the desired
configuration to the nodes based on the number of ‘mud’-
coloured ones, we can define Γ = {γ s.t. γ(v) 6= mud ∀v ∈
V } \ {all mud-detected}. This way, the set Γ does not give
the nodes any new information as well as preventing them
from arbitrarily choosing ‘mud-detected’ in the first round,
because if they all do so they are trapped in the non-winning
all-‘mud-detected’ state.

Finally, observe that consensus protocols in distributed sys-
tems can also be seen as flag coordination games. We now
define a slightly broader class of consensus games, in which
not only monochromatic goal states can be achieved.

Definition 2 (Generalised Consensus). Consider
F = (G,X, β, C,Γ,A, φ) to be the set of rules of a flag coor-
dination game where X = {x0, . . . , xr−1} also, the set Γ has

2We sometimes use simply game to denote the pair (F , s0).

r elements, Γ = {γ0, γ1, . . . , γ(r−1)}, such that, for a given
pair (v, x), where v ∈ V and x ∈ X, there is exactly one
γ ∈ Γ with γ(v) = x. We define β(v) = X for all v ∈ V .
The visibility of each vertex v is the set of neighbours of
v, N (v). Finally, for each v, the algorithm αv consists in
choosing on round si a neighbour of v at random3, say w
then observing which γ ∈ Γ is such that γ(w) = si(w). We
then define the value si+1(v) = γ(v).

The algorithm above is well defined because, for each pair
(v, x), where x = s(v), there is only one goal configuration
in which v takes colour x. We use the term generalised
consensus because, assuming the nodes know where they
are and which other nodes they can see, they adhere to the
winning configuration that the randomly chosen neighbour
belongs to. In particular, if γi(v) = i, ∀v ∈ V and 0 ≤ i < r,
then we have a consensus problem in the usual way.

Definition 3 (Games on Bipartite Graphs). Let
us denote by Fb = (G,X, β, C,Γ,A, φ) the rules of a gener-
alised consensus flag coordination game played on a bipartite
graph G = (U,W,E), with V = U ∪W .We also define what
is a monochromatic partition in a more broader way, in line
with Definition 2: we say partition U is monochromatic if
∃γ ∈ Γ such that ∀u ∈ U , si(u) = γ(u). For short, we say
that U is γ-monochromatic.

2.3 Single-partition Games
In this section, we define single-partition games, games

in which there is only one reachable winning configuration
(Proposition 3). Alternatively, these games always have a
non-randomising partition: a partition whose nodes have a
deterministic behaviour.

In order to provide a motivation for the split function de-
fined later in this section (see Definition 9) (and thus also
for the definition of single-partition games), we show an in-
teresting connection between annihilating random walks on
cycles (see [6]) and flag coordination games. For other ap-
proaches on consensus and random walks on graphs, see [4].

Consider a flag coordination game (Fb, s0) as in Defini-
tion 3, where X = {blue, red} and G is not only bipartite
but also a cycle. For simplicity, we assume the goal states
are the standard consensus configurations: all-blue and all-
red. In a given round si, we say that a vertex is a non-
randomising node if it has deterministic behaviour, that is,
both neighbours of the same colour (e.g., node v1 in Figure
2). Otherwise, we have a randomising node. These nodes
are going to chose blue or red with 50% chance each (e.g.,
node v4 in Figure 2).

Independently, consider G a n-cycle, n even, and also 2k
random walking particles each positioned in a different node
of G. At each round of this game, each particle walk clock-
wise or counter-clockwise with probability 50% each. They
all move synchronously. If two particles meet, both disap-
pear. The game ends where there are no particles left. Note
that particles that start within an odd distance between each
other will never meet.

We claim that both games described above are equiva-
lent. Given a flag coordination game (Fb, s0), we generate
an equivalent random walks game by positioning the random

3Here we can also add edge weights for more general defini-
tion. For simplicity, in this paper we consider that all edges
have the same weight.
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Figure 2: A Random Walks Game Generated from a
Flag Coordination Game Considering Randomising
Nodes.

walking particles at the nodes that are randomising nodes in
(Fb, s0). The expected duration of both games is the same.
We can see an example in Figure 2. Orange nodes in the
random walks model (the ones in which there are random
walking particles) correspond to randomising nodes in the
flag coordination model.

That connection, together with the fact that random walk-
ing particles in one partition never meet the ones in the
other, motivates us to study each partition of the graph in
a flag coordination game independently. Hence we state the
following definition:

Definition 4 (Single-partition round and game).
Let (Fb, s0) be a game as in Definition 3. We define a
single-partition round of (Fb, s0) as a round si in which
the behaviour of all nodes in at least one partition of G is
deterministic.

Moreover, we define a single-partition game as a game
in which all rounds are single-partition rounds.

Note that the corresponding random walks model of a single-
partition flag coordination game has particles in one parti-
tion only. We will now show that if round s0 is a single
partition round, then (Fb, s0) is a single-partition game.

Proposition 1. Let (Fb, s0) be a game as in Definition 3
where G is connected. If si is a single-partition round, then
there is at least one partition, say U , that is monochromatic.

Proof. Let W be the non-randomising partition on such
round. Then, for each w ∈ W all u ∈ N (w) are coloured
according to the same γw ∈ Γ. Since G is connected, all such
γw must coincide (otherwise there would be a w with neigh-
bours in two different γw, which is not possible). We call
that common colouring γ. Then, U is γ-monochromatic.

Proposition 2. A game that eventually reaches a single-
partition round has all its subsequent rounds also single-
partition. In particular, if s0 is a single partition round,
(Fb, s0) is a single-partition game.

Proof. Say U is γ-monochromatic partition in a single-
partition round si. Then, in round si+1, all nodes in W will
have been adhered to γ, thus W will be γ-monochromatic
and so si+1 is also a single-partition round. By induction,
(Fb, s0) is a single-partition game.

Does this proposition imply anything regarding the possi-
ble final configurations of single-partition games? Indeed,

the next proposition shows that there is only one possible
winning state for such games.

Proposition 3 (Ending of Single-partit. Games).
Let γ ∈ Γ be such that there is a γ-monochromatic parti-
tion on the initial round of a single-partition game (Fb, s0).
Then, in the case the game reaches consensus (it might not),
such consensus must be γ.

We now define a function that colours edges according to
whether the colour of the nodes it connects belong to the
same colouring ( “black” edge) or not ( “green” edge).

Definition 5 (Edge-colouring Function f). Let
(Fb, s0) be a single partition game and CE = {green, black}E

be the collection of all 2|E| possible colourings for the edges
in G. We define f : C → CE, f(s) = r as the function that
colour each edge e = (u,w) in the following way:

r(e) =

{
black, if (∃γ ∈ Γ)[s(u) = γ(u) ∧ s(w) = γ(w)]
green, otherwise

In other words, an edge is green4 if and only if the current
colours of the nodes it links do not agree. Note that a game
ends successfully when all edges are black. We can now give
the probability of success based on the initial configuration
of a single-partition game. We first formally define what we
mean by “success”.

Definition 6 (Winning Game). We say that a game
(F , s0) is successful, or it is a winning game, if there ex-
ists i ≥ 0 st ∀j ≥ i, sj ∈ Γ where (s0, . . . , sk, . . . ) is the
trace of such a game. We then define P(F,s0) as the prob-
ability that (F , s0) is a successful game More generally, we
define P γ(F,s0) as the probability that the game reaches colour-

ing γ. Since for the generalised consensus problem winning
colourings are stable, we have P(F,s0) =

∑
γ∈Γ P

γ
(F,s0)

Definition 7 (Black Edges Counter). Let G be a
connected graph, (Fb, s0) be a single partition game on G
and r0 = f(s0). We define (Yi)i>0 as the random variable
that counts the number of black edges in ri.

Note that, for single-partition games on connected graphs,
if Y0 = |E|, then s0 ∈ Γ and therefore the game is certainly
a winning game. On the other hand, if Y0 = 0, then Y1 is
also zero and indeed Yi = 0 for i ≥ 0. We can show this
by induction. Assume Yi = 0. Then, there is one partition,
say U , that is γ-monochromatic on round si. Therefore, W
will be γ-monochromatic on round si+1 and also no node
in U will keep their colour, i.e., si+1(u) 6= γ(u), because no
node in U on round si have a neighbour in γ (since Yi = 0).
Thus, Yi+1 = 0 and, by induction, the game will never reach
colouring γ.

Definition 8 (Duration of a Game). For games of
the form (Fb, s0), we now define the duration d of the trace of
a game being the smallest i such that Yi ∈ {0, |E|}. In other
words, we are considering both winning and losing games in
our definition of duration. We define D(Fb,s0) to be the ex-
pected duration of a game with initial configuration (Fb, s0).

4For easier image reading, green edges are also dashed.



Theorem 1 (Probability of success). Let (Fb, s0)
be a single partition game on a connected graph G. Let γ ∈ Γ
be the colouring for the monochromatic partition in (Fb, s0).
Then the probability of success of (Fb, s0) is given by:

P(Fb,s0) =
Y0

|E| (1)

Note that there is only one winning state in a single-partition
game: the state which the nodes on the randomising parti-
tion are in.
Note that this result is similar to the one by Hassin and
Peleg (see Section 4), but now instead of considering the
entire graph, we consider only one partition: say (Fb, s0)
is a game in which W is γ-monochromatic. Then, defining
Uγ = {u ∈ U | s0(u) = γ(u)} we have

P(Fb,s0) =
∑
u∈Uγ

deg u

|E| (2)

Theorem 2 (Expected Duration - Upper-bound).
Let (Fb, s0) be a single partition game on a connected graph
G, where |V | = n and |E| = m. If Y0 = 0 or Y0 = m, then
the duration of the game is zero. Otherwise, let γ ∈ Γ be the
colouring of the monochromatic partition in this initial state.
Denote Zi(v) as the number of black edges connected to v on
round i. Finally, let Vi be the monochromatic partition on
round i. Then, we have

mY0 − Y 2
0 = E

 ∞∑
i=0

∑
v∈Vi

Zi(v) (deg v − Zi(v))

 (3)

Thus, because the internal sum is greater than or equal to 1
for the duration of the game we have that the expectation of
the duration of the game (Fb, s0) until there are either no
black edges left (the game is a losing game) or only black
edges left (colouring γ wins) is bounded by:

D(Fb,s0) ≤ mY0 − Y 2
0 (4)

The proof of this theorem is a direct application of the fol-
lowing lemmas (see Appendix for proofs).

Lemma 1. E(Y 2
∞) = mY0.

Lemma 2. For each i ≥ 0, we have

E(Y 2
i+1)− Y 2

0 =

i∑
s=0

E(Z2
s ). (5)

Lemma 3. For each s ≥ 0 we have that

E(Z2
s ) = E

(
n∑
j=1

Z
vj
i

(
deg vj − Z

vj
i

))
(6)

Example 3. Consider the initial configuration of a game
(Fb, s0) in Figure 3. Here Γ = {b, r} where b and r colour
all nodes in blue and red, respectively.

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5 w6

Figure 3: Game (Fb, s0).

We have that |E| = 12
and Y0 = 7, therefore,
by Theorem 1, P(Fb,s0) =

P b(Fb,s0) = 7
12

. Also, by
Theorem 2, the expected
duration of the game is
bounded by D(G,s0) ≤
84− 49 = 35.

2.4 General bipartite graphs
The previous results were somehow very restrictive given

that single-partition games are rare if we consider the initial
configuration to be random. In order to be able to solve
the problem for an arbitrary initial configuration, we define
a function that splits the original problem into two single-
partition games. Then, based on the results of the two new
games, we can fully determine what happens on the original
one.

Definition 9 (Split function). We let (Fb, s0) be a
game on a connected graph G and splitG be the function that
takes a colouring s ∈ C and outputs two colourings ρ, σ ∈ C
such that one colouring copies the colours of s in partition U
and where the other colouring copies colours in W , colouring
the remaining nodes according to the same given winning
colouring γ. Formally, we have that

splitG : C × Γ→ C × C
splitG(s, γ) = (ρ, σ)

Where ρ �U= s �U and ρ �W= γ �W , also σ �W= s �W and
σ �U= γ �U .

Example 4. Let us consider the initial configuration of a
game (Fb, s0) as shown in Figure 5. Let Γ = {b, r}, where b
and r are the monochromatic colourings blue and red, respec-
tively. Applying the split function splitG(s0, b) = (ρ0, σ0) we
get Figure 4.

Note that the split function is solely a concrete way to visu-
alise the independence of the behaviour of the two partitions
in such games.

Theorem 3. Let (Fb, s0) be a flag coordination game as
in Definition 3 and let (ρ0, σ0) = splitG(s0, γ), where γ ∈ Γ
is any given winning configuration. In these conditions,

P γ(Fb,s0) = P(Fb,ρ0)P(Fb,σ0) =
∑
u∈Uγ

deg u

|E|
∑
w∈Wγ

degw

|E| (7)

In other words, we have that goal γ is the winning configu-
ration of (Fb, s0) if and only if both (Fb, ρ0) and (Fb, σ0) are
winning games (note that, according to Proposition 3, they
can only reach one winning configuration, and that is γ).
Alternatively, denoting Y0 and X0 as the number of black
edges in (Fb, ρ0), respectively, then P γ(Fb,s0) = Y0X0

|E|2 .

If we are not interested in the winning colouring but solely
whether the game ends successfully, since winning colourings
are stable, we have that

P(Fb,s0) =
∑
γ∈Γ

P γ(Fb,s0) (8)

Proof. The idea of the proof is straightforward: the be-
haviour of nodes in W in (Fb, ρ0) is the same as the ones in
W in (Fb, s0). That is because a node w ∈W see the same

u1 u2 u3 u4

w1 w2 w3 w4 w5

u1 u2 u3 u4

w1 w2 w3 w4 w5

Figure 4: Games (Fb, ρ0) and (Fb, σ0).



u1 u2 u3 u4

w1 w2 w3 w4 w5

Figure 5: Game (Fb, s0).

set of colours in both games. At the same time, the be-
haviour of U in (Fb, σ0) is the same as U in (Fb, s0). During
the next round, the same is true but now for the opposite
partitions. Moreover, all nodes v in non-randomising par-
titions (the ones looking at vertices all in γ) will have a
deterministic behaviour: to choose the colour γ(v).

The core of the proof relies on the fact that the behaviour
of the nodes in a given partition, say U , in game (Fb, s0)
on even rounds will never depend on decisions these same
nodes took on previous odd rounds. That happens because
bipartite graphs have no cycles with odd length. All the
‘information’ contained in partition U on si is captured by
partition W on si+1, and only by partition W . That in-
formation will go back to U on si+2. Therefore, the split
function captures that behaviour by generating two inde-
pendent games whose nodes in randomising partitions make
decisions as nodes in U and W on (Fb, s0) do.

Proposition 4 (Expected Duration - General). X
Let (Fb, s0) be a game on a connected graph G. Then the
game will finish in O(n3 logn) rounds.

Proof. This is an direct application of the results in [7].
We have that, for each of the games (Fb, ρ0) and (Fb, σ0),
where splitG(s0, γ) = (ρ0, σ0), the expected time is bounded
by O(n3 logn). Therefore the expected number of rounds for
the general game is also bounded by O(n3 logn).

It is left for future work to find a way to use the upper-
bound found for single-partition games (see Theorem 2) on a
solution for general games on bipartite graphs. We know we
cannot just take the greater of the two bounds for (Fb, ρ0)
and (Fb, σ0) to estimate the bound for (Fb, s0). As an il-
lustration of this, consider the problem of expected times
in dice tossing: although the expected number of tosses to
get a face, say “4”, in one die is 6, the expected number of
rounds, on the other hand, for two dice (both tossed in each
round) in order to get a “4” in both, not necessarily at the
same time, is 96

11
which is greater than 6.

All previous results take into account that every node
knows the position of the neighbours they see in the graph
G. If we relax that condition determining that nodes do see
the colours of their neighbours, but not their labels, then
we cannot solve the generalised consensus problem in the
same way. In a non-bipartite graph, the standard consensus
problem can be solved, as shown in [7]. Moreover, in bipar-
tite graphs, not only can the standard consensus problem
be solved, but also the proper colouring problem. Nodes do
not have to know the partition they are in nor the labels of
the nodes whose colours they are looking at, as long as they
know they are in a bipartite graph and whether they seek
standard consensus or proper colouring of the graph. That
is the case because for both problems all neighbours of a
given node are coloured the same in each of the goal states
γ ∈ Γ.

Single-partition
games

General games on
bipartite graphs

Probability
of colouring
γ winning

Y0

|E|
Y0X0

|E|2

Upper-bound
for expected

duration

mY0 − Y 2
0 O(n3 logn)

Table 1: Summary of results

3. GAME-THEORETIC APPLICATION
Let us consider the game (Fb, s0) as shown in Figure 3.

Say there is one player, player R, in this game and she wins
if the consensus game played on this graph is successful and
red is the winning colour. By Theorem 3, we can calculate
the probability of this to happen: P r(Fb,s0) = 7

10
× 4

10
= 28

100
.

u1 u2 u3

w1 w2 w3 w4 w5

Figure 6: An Initial
configuration (Fb, s0).

Let us suppose now that
the payoff for R in winning
such game is $100, whereas
losing the game gives R a
payoff of $0. Say that, before
the game starts, she is of-
fered to freely choose a node
and change its colour in ex-
change for $10. Should she
accept the offer? In this case,
which node’s colour should R
change in order to maximise her gains? Finally, in gen-
eral, what should be the fair price given by the function
costFb : C → R that associates a configuration s ∈ C to a
real number c ∈ R that represents the maximum price player
R is willing to pay for such an action?

We trivially answer the first question by showing that
player R should accept the offer. Changing the colour of v2,
for example, would give a probability of winning of 10

10
× 4

10
=

40
100

, therefore an increase of $12 on average. So, by paying
an extra $10, she should expect an increase of her average
final payoff by $2. That, however, is not the best move for
player R. Although v2 is the most connected blue node in
s0, changing the colour of either of the other ones would
contribute for a (equally) higher increase of payoff. We have
7
10
× 6

10
= 42

100
, and therefore costFb(s0) = 14.

Let us now present the following simple result before ex-
ploring a similar problem with more than one player.

Proposition 5. Let (Fb, s0) be a flag coordination game
as in definition 3 with X = {red, blue} and Γ = {r, b}, where
r(v) = red and b(v) = blue ∀v ∈ V . Let R be a player that
has the option to change the colour of a node before the flag
coordination game starts in exchange for part of her payoff.
Assume also that R’s payoff is L > 0 if the game finishes in a
consensus of red nodes and 0 otherwise. In these condition,
the expected cost of the action of freely changing a node’s
colour is given by

costFb(s0) =
max{∆(Ub) |EWr | ,∆(Wb) |EUr |}

E2
L (9)

Where ∆(V ) stands for the maximum degree among the nodes
in V and |EV | =

∑
v∈V deg v. Remind that Vγ = {v ∈ V |

s0(v) = γ(v)}.
Proof. Firstly, let us recall from Theorem 3 that the



probability of a given colour c winning a game is the product
of two sums, each over nodes in a different partition. Thus,
the particularities of connections and degrees do not matter
as long as the sum of the degrees of nodes coloured c is each
partition is the same. For that reason, the degree of the
node R changes colour of and the partition it belongs to are
only what counts towards the increase in her payoff.

Therefore, we just have to compare the (one of the) most
connected blue nodes in each partition and choose the one
that most increases P r(Fb,s0). Since |E| is constant, it is
enough to take max{∆(Ub) |EWr | ,∆(Wb) |EUr |}, and thus
the expected increase of R’s payoff (and consequently max-
imum price to pay) is given by Equation 9.

Let us now consider an alternative game played now by R
and B based on a flag coordination game (Fb, s0) in which
the set of colours is X = {b, r}. Their payoffs according to
the possible endings of the flag coordination game are:

r wins (Fb, s0) unsuccessful b wins
R 1 α 0
B 0 1− α 1

Table 2: Payoffs for Players R and B Based on the
Outcome of Game (Fb, s0).

We assume, w.l.o.g., 0 ≤ α ≤ 1
2
. If each player is allowed

to synchronously change the colour of a node in their favour,
what should be their choice? Again, it is not necessarily true
that the most connected node in V is the best option. There
might also not be a pure strategy Nash equilibrium for that
scenario.

Proposition 6. Let players R and B be observers of a
flag coordination game (Fb, s0). Before the start of (Fb, s0),
player R can change the colour of a blue node to red, and
player B can, at the same time, change the colour of a red
node to blue. By proposition 5, we know that there are only
two choices for each player: the most connected opponent
nodes in each partition. B’s expected payoffs are then de-
scribed in table 3.

B
R

Ub Wb

Ur PayB(Ur, Ub) PayB(Ur,Wb)
Wr PayB(Wr, Ub) PayB(Wr,Wb)

Table 3: Payoffs for B

Here, PayB(Pr, Qb) represents the expected payoff for B
if he changes the colour of the one of the most connected red
node in partition P ∈ {U,W} and R changes the colour of
one of the the most connected blue nodes in partition Q ∈
{U,W}. For example, PayB(Ur, Ub) = 1

E2

[
|EWb | (|EUb | +

∆(Ur)−∆(Ub))(1−2α)+|E| (|EUb |+|EWb |+∆(Ur)−∆(Ub))
]

In these conditions, either one of the following applies. If
α = 1

2
, then the best strategy for both players is to choose

the best increase in their probability of winning regardless of
the other player’s decision. Otherwise, if PayB(Ur, Ub) ≥
PayB(Wr, Ub) and PayB(Ur, Ub) ≥ PayB(Wr, Ub) (resp.
for ≤ and for PayA), then there is a pure strategy Nash
Equilibrium for this game. Otherwise, there is a mixed strat-
egy Nash equilibrium in which the probability of A choosing

Ur is given by

p =
K + ∆(Ur)∆(Wb) + ∆(Wr) |EUb | −∆(Ur) |EWb |

∆(Ur)∆(Wb) + ∆(Wr)∆(Ub)

Where K = |E|(∆(Wr)−∆(Ur))
1−2α

. Then, the expected payoff for

B is given by PayB(Ur, Ub)p+ PayB(Ur,Wb)(1− p).

The proof is given by direct calculation of the Nash Equi-
librium for this game.

Example 5. For a real life application of these results,
consider partitions U and W are groups of doctors and pa-
tients, respectively. An edge {u,w} represents that u is a pa-
tient of doctor w. Let also R and B be two competing health
insurance companies. We assume each node must adopt one
and only one of the two insurance options at a given time.
Of course, doctors want to accept the insurance of their pa-
tients and vice-versa. Finally, we assume that they all might
switch to another company (or not) at a given common time
every year, and that they make this decision based on their
neighbours’ current choices (as in Definition 2).

We can then apply the previous results if R and B are will-
ing to offer benefits for patients/doctor in order to persuade
them to change companies.

4. RELATED WORK
The problem of distributed consensus in computational

systems has been extensively studied, including specifically
in multi-agent contexts; for reviews, see e.g., [11, 13]. If
we consider communications protocols in which nodes base
their decisions only on the colour of one of their neighbours
(chosen at random), the probability of convergence for each
colour and the complexity of the expected duration has been
found by Hassin and Peleg [7] for any non-bipartite graph.
In their model, nodes have a common clock and change
their colours synchronously in rounds, until a consensus is
reached. The probability of a given colour c to win that

consensus game is
∑
v∈Vc

deg (v)
2|E| , where Vc is the subset of

nodes that are coloured c. All edges are assumed to have
the same weight. Note that our results extend the work of
Hassin and Peleg to bipartite graphs, as well as proposing a
solution for the generalised consensus problem (see Defini-
tion 2), provided nodes are aware of their neighbours’ labels
and of the graph structure.

Experiments with human participants for proper colour-
ing of graphs on networks were conducted by Kearns et al.
[9]. These authors explored different restrictions on the vis-
ibilities of the participating human agents and showed that
more information does not necessarily lead to a better per-
formance. There are two key differences between [9] and
our model. Firstly, [9] does not assume that agents share
a common clock, so that agents could change their selected
colours at will, asynchronously. Secondly, the agents in ques-
tion were actual humans in experiments who were able to
use any decision algorithm, or combination of algorithms, or
none at all, to select colours. Real humans may also have
been whimsical or malicious.

A game-theoretic approach for graph colouring was stud-
ied by Panagopoulou and Spirakis in [12]. In their model,
each node v chooses a colour and then receives a payoff
equal to the number of nodes that have chosen the same
colour, unless a neighbour of v is one of those nodes choos-
ing the same colour, in which case the payoff to v is zero.



The authors prove that a Nash Equilibrium is always possi-
ble in this game. The key difference with our work is that
Panagopoulou and Spirakis do not require nodes to choose
their colours synchronously.

Other papers that consider different variants of this prob-
lem are [5, 10, 3]. In a nutshell, in [5], nodes make their
decisions based on two random neighbours, not just one. In
[10], one-round algorithms are studied instead. In [3], the
number of available colours for the nodes is ∆ + 2, whereas
in our work the number of colours is not a function of ∆
(for example, we use 2 colours in any bipartite graph for the
graph colouring problem for any ∆).

5. DISCUSSION AND CONCLUSIONS
We now return to the problem posed in Example 1. It may

seem counter-intuitive, but we can now clearly see that the
probability of gray being the winning colouring, although
there are 7 gray nodes of the 20 nodes in total, is zero.
Note there there is no gray node in the ‘even’ partition. By
Theorem 3, we have that the probability of blue winning is
given by P blue(Fb,s0) = 2

20
× 12

20
= 6% and the probability of red

winning is P red(Fb,s0) = 4
20
× 8

20
= 8%. Thus, in this case, the

least common colour (also the colour with the fewest number
of edges connected to nodes of that colour) is the most likely
to win. However, note that the most likely outcome is not
success, but that the game is a losing game, with probability
86%.

Such unexpected situations do not occur when G is non-
bipartite: in these cases the most connected colour (consid-
ering the weights of edges) always has the highest probabil-
ity of winning [7]. Also, the fact that non-bipartite graphs
have at least one odd cycle implies that every game on such
graphs is a winning game.

Note that this now generalised consensus flag coordination
game for any graph G does not require that agents know
their current colour in order to make a decision. Although
each agent has to make a decision of a colour at each round,
this decision may be forgotten immediately afterwards, and
before deciding colours at the next round.

As mentioned in the Introduction, flag coordination prob-
lems arise in many areas of computer science, economics,
and public policy. For consensus protocols, applications in
distributed computing have been known for some time. The
recent rise of distributed ledger technologies (also known
as blockchains), which use consensus protocols and cryp-
tographic methods to create variables having shared state
across a set of autonomous nodes, creates another class of
applications in many commercial domains [1].

In this paper, we have explored research Questions 1, 2
and 3 of Section 1, particularly when agents are connected
via a bipartite graph. One avenue for future research is to
consider these questions for n-partite graphs, for any inte-
ger n. A second area of future work is to obtain tighter
upper bounds for single-partition games, perhaps through
finer-grained analysis of the probability distributions of the
colours. A third area is to consider agent decision-algorithms
where agents are able to base their choice on the colours of
more than one of their neighbours; doing this will permit
consideration of larger sets of desired goal states. Under-
standing the effects of n-partite graphs and of more sophis-
ticated decision-algorithms will allow the exploration of re-
search Questions 4 and 5 of Section 1.

APPENDIX
This appendix presents proofs of Theorem 1 and Lemmas 1,
2 and 3 omitted in the text above.

Proof of Theorem 1. We first prove that (Yi)i≥0 is a
bounded martingale [8] with respect to (si)i≥0 (note that by
knowing si we also have ri = f(si)). Denote also δi(v) =
Zi+i(v) − Zi(v), where Zi(v) denotes the number of black
edges connected to v on round i. Note that deg v stands for
the number of neighbours of v.

If Y0 = |E|, then P(Fb,s0) = 1. On the other hand,
P(Fb,s0) = 0 if Y0 = 0. Else, we call, Vi the monochromatic
partition on round i. Then,

E(Yi+1 | si) = E

∑
v∈Vi

(Zi(v) + δi(v)) | si


=
∑
v∈Vi

Zi(v) +
∑
v∈Vi

E(δi(v) | si) =

= Yi +
∑
v∈Vi

[
P {si+1(v) = si(v)} (deg v − Zi(v))

+ P {si+1(v) 6= si(v)} (−Zi(v))
]

=

= Yi

The last step follows from P {si+1(v) = si(v)} = Zi(v)
deg v

and P {si+1(v) 6= si(v)} = deg v−Zi(v)
deg v

.

Therefore, (Yi)i≥0 is a martingale with respect to (si)i≥0.
Since 0 ≤ Yi ≤ |E|, the martingale is also bounded and
thus we can apply Doob’s Optional stopping theorem to get
E(Y0) = E(Y∞) = Yd, where d stands for the duration of
the game (Fb, s0) until all edges turn black or none is black
anymore. Note that there are two absorbing states: 0 and
|E|. Thus,

Y0 = E(Y0) = E(Y∞) = |E|P(Yd = |E|) + 0P(Yd = 0) (10)

That concludes the proof.

Proof of Lemma 1. From P(Yd = m) = Y0
m

, we have

E(Y 2
∞) = m2P(Yd = m) + 02P(Yd = 0) = mY0

Proof of Lemma 2. It is clear that Yi+1 = Yi + Zi,
where Zi = Yi+1 − Yi. Note that Zi is the sum of Zi(v)
for nodes v in one of the partitions of G. By Theorem 1,
E(Zi | si) = 0. Then,

E(Y 2
i+1 | si) = E(Y 2

i + 2YiZi + Z2
i | si) = Y 2

i + E(Z2
i | si)

By induction we have the result.

Proof of Lemma 3. We start by E(Z2
i | si). Using the

notation δi(v) = Zi+1(v)− Zi(v) we have Zi =
∑
v∈Vi δ(v).

Since E(Zi | si) = 0, then E(Z2
i | si) = Var(Zi | si). The

random variables δi(v) are independent, then

Var(Zi | si) =
∑
v∈Vi

Var (δi(v)) =
∑
v∈Vi

Zi(vj) (deg v − Zi(v))

because we have (−Zi(v))2 deg v−Zi(v)
deg v

+(deg v − Zi(v))2 Zi(v)
deg v

= Var(δi(v)).
Using E(Z2

i ) = E(E(Z2
i | si)) = E(Var(Zi | si)), we get

E(Z2
i ) = E

∑
v∈Vi

Zi(v) (deg v − Zi(v))

 (11)

Which concludes the proof.
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