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Abstract. We apply ideas from abstract argumentation theory to study
cooperative game theory. Building on Dung’s results in his seminal pa-
per, we further the correspondence between Dung’s four argumentation
semantics and solution concepts in cooperative game theory by showing
that complete extensions (the grounded extension) correspond to Roth’s
subsolutions (respectively, the supercore). We then investigate the re-
lationship between well-founded argumentation frameworks and convex
games, where in each case the semantics (respectively, solution concepts)
coincide; we prove that three-player convex games do not in general have
well-founded argumentation frameworks.
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1 Introduction

Argumentation theory is the branch of artificial intelligence (AI) that is con-
cerned with the rational and transparent resolution of disagreements between
arguments (e.g. [18]). Abstract argumentation theory, as articulated in Dung’s
seminal paper [7], abstracts away from the contents of the arguments and the
nature of their disagreements. The resulting directed graph (digraph) represen-
tation of arguments (nodes) and their disagreements (directed edges), called an
abstract argumentation framework (AF), is simple yet powerful enough to resolve
these disagreements and determine the sets of winning arguments.

Dung demonstrated the “correctness” of abstract argumentation by showing
how abstract argumentation “can be used to investigate the logical structure of
the solutions to many practical problems” [7, Section 3]. Specifically, he inves-
tigated two examples of problems from microeconomics (e.g. [14]): cooperative
game theory and matching theory. In each case, Dung showed how an appro-
priate AF can represent a given cooperative game or a given instance of the
stable marriage problem, and that the sets of winning arguments in such AFs
correspond to meaningful solutions in both of these domains.

In this paper, we further demonstrate the “correctness” of abstract argu-
mentation theory by investigating its relationship with cooperative game the-
ory. Cooperative game theory (e.g. [6]) is the branch of game theory (e.g. [27])

mailto:peter.young@kcl.ac.uk
mailto:david.kohan@kcl.ac.uk
mailto:josh.murphy@kcl.ac.uk


2 A. P. Young, D. Kohan Marzagão and J. Murphy

that studies how normatively rational agents may cooperate in order to possibly
earn more payoff than they would do as individuals. Cooperative game theory
abstracts away from individual agents’ strategies in such games for a simpler
and “high level” view of their interactions.1 Each cooperative game consists of
finitely many agents that can cooperate as coalitions, and each coalition earns
some payoff as measured by its value. Given certain standard assumptions on the
values of coalitions, all agents should cooperate as a single coalition, called the
grand coalition. However, this still leaves open the question of how the payoff
obtained by the grand coalition (which is already maximised) should be dis-
tributed among the individual agents, such that no agent should want to defect
from the grand coalition. Historically, the first solution concept for cooperative
games that captures this idea is the Von Neumann-Morgenstern (vNM) stable
set, where each such set consists of such payoff distributions interpreted as an
“acceptable standard of behaviour” [27]. Subsequently, Dung showed that each
possible payoff distribution can be interpreted as an argument in an AF. Payoff
distributions “disagree” when agents can defect because they can earn strictly
more. This argumentative interpretation of cooperative games allowed Dung to
demonstrate that the stable extensions of the AF of each cooperative game cor-
respond exactly to the game’s vNM stable sets [7, Theorem 37].

However, just like that stable extensions of an AF may not exist, vNM sta-
ble sets for cooperative games also may not exist [11,12]. As a result, alternative
solution concepts have been proposed. For example, Dung proposed that sets
of payoff distributions that form preferred extensions could serve as an alter-
native solution concept, because preferred extensions of AFs always exist, and
therefore this is well-defined for all cooperative games. Other possible alternative
solution concepts from cooperative game theory include the core [8], the subso-
lution and the supercore [21]. Dung showed that the core corresponds to the set
of unattacked arguments of the game’s AF [7, Theorem 38]. This paper’s first
contribution is to finish the correspondence between Dung’s four argumentation
semantics and the various solution concepts from cooperative game theory by
proving that the complete extensions (respectively, the grounded extension) of
the AF correspond(s) to the subsolutions (respectively, the supercore) of the
cooperative game. These correspondences allow us to characterise when the su-
percore of a cooperative game is non-empty via the Bondareva-Shapley theorem
[3,24]: exactly when the game is balanced (see Section 3.2).

Shapley investigated a special class of cooperative games called convex games,
which capture the intuition that agents have more incentive to join larger coali-
tions; the key property of each such game is that its core is its unique stable
set [25, Theorem 8]. In abstract argumentation theory, a similar result by Dung
states that if an AF is well-founded, its grounded extension is its unique stable
set [7, Theorem 30]. Given these similar results, we would like to know whether
convex games always give rise to well-founded AFs. Our second contribution in

1 The nature of this cooperation is exogenous to the theory, but can be interpreted as
groups of agents forming binding contracts. See, e.g. [6, page 7].
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this paper is a negative answer to this question through a three-player counter-
example.

The rest of this paper is structured as follows. In Section 2, we review abstract
argumentation theory and cooperative game theory. In Section 3, we complete
the correspondences between Dung’s four argumentation semantics with solution
concepts in cooperative games and study the properties using well-known results
from argumentation. In Section 4, we recap convex games and well-founded AFs,
and give a counter-example of a three-player convex game that gives rise to a
non-well-founded AF. In Section 5, we compare our results with related work in
argumentation theory and game theory, and conclude with future work.

2 Background

Notation: Let X,Y, Z be sets. P (X) is the power set of X and |X| is the
cardinality of X. N is the set of natural numbers (including 0) and R is the set of
real numbers. Further, R+ (respectively, R+

0 ) is the set of positive (respectively,
non-negative) real numbers. For n ∈ N, the n-fold Cartesian power of X is Xn.
If f : X → Y and g : Y → Z are appropriate functions, then g ◦ f : X → Z is
the composition of g then f , and functional composition is denoted with ◦. If X
is a set, then for a function f : X → R, f ≥ 0 abbreviates (∀x ∈ X) f(x) ≥ 0.

2.1 Abstract Argumentation Theory

An (abstract) argumentation framework2 (AF) is a directed graph (di-
graph) 〈A,R〉 where A is the set of arguments and R ⊆ A2 denotes the
attack relation, where for a, b ∈ A, (a, b) ∈ R, abbreviated by R(a, b), denotes
that a disagrees with b. Let S ⊆ A be a set of arguments for the remainder of
this subsection. Define S+ := {b ∈ A (∃a ∈ S)R(a, b)} to be the set of all ar-
guments attacked by S. The neutrality function is n : P (A) → P (A) where
n(S) := A− S+ denotes the set of arguments not attacked by S, i.e. the set of
arguments that S is neutral towards. We say S is conflict-free (cf) iff S ⊆ n(S).
Similar to S+, let S− := {b ∈ A (∃a ∈ S)R(b, a)}, and for a ∈ A, a± := {a}±.
The defence function is d : P (A) → P (A) where a ∈ d(S) iff a− ⊆ S+.3

It can be shown that d = n2 := n ◦ n [7, Lemma 45]. Let U ⊆ A denote the
set of unattacked arguments. It can be shown that U = d (∅). We say S is
self-defending (sd) iff S ⊆ d(S). Further, S is admissible iff it is cf and sd.

To determine which sets of arguments are justifiable we say S is a com-
plete extension iff S is admissible and d(S) ⊆ S.4 Further, S is a preferred
extension iff it is a ⊆-maximal complete extension [28, Theorem 7.11], S is
a stable extension iff n(S) = S and S is the grounded extension iff it is

2 When defining our terms in this paper, any words in between brackets may be
omitted when using the term, e.g. in this case, the terms “argumentation framework”
and “abstract argumentation framework” are interchangeable.

3 In [7, Section 2.2] this is called the characteristic function.
4 i.e. if one can defend a proposition then one is obliged to accept it as justifiable.
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the ⊆-least complete extension. These four semantics are collectively called the
Dung semantics, and each defines sets of winning arguments given 〈A,R〉.

2.2 Cooperative Game Theory

We review the basics of cooperative game theory (see, e.g. [6]). Let m ∈ N and
N = {1, 2, 3, . . . ,m} be our set of players or agents.5 We assume m ≥ 1. A
coalition C is any subset of N . The empty coalition is ∅ and the grand
coalition is N .

Example 1. Consider the set of players N = {1, 2, 3}, where m = 3. In our
examples, agents 1, 2 and 3 are respectively named Josh, David and Peter. If all
three decide to work together, then they form the grand coalition N . If only Josh
and David work together and Peter works alone, then the resulting coalitions
are, respectively, {1, 2} and {3}.

A valuation function is a function v : P (N) → R such that v (∅) = 0.
The number v(C) can be thought of as the coalition’s payoff as a result of the
agents’ coordination of strategies; this payoff is in arbitrary units.

Example 2. (Example 1 continued) If Josh, David and Peter work together and
earn 10 units of payoff, then v(N) = 10. If Josh and Peter will lose 50 units of
payoff if they work together, then v({1, 3}) = −50.

Given N and v, with m := |N |, a (cooperative) (m-player) game (in normal
form) is the pair G := 〈N, v〉. The following five properties are standard for v.
We say v is non-negative iff v ≥ 0; this excludes valuation functions such as the
one in Example 2. We say v is monotonic iff for all C,C ′ ⊆ N , if C ⊆ C ′, then
v(C) ≤ v(C ′). We say v is constant-sum iff (∀C ⊆ N) v(C)+v(N−C) = v(N).
We say v is super-additive iff for all C,C ′ ⊆ N , if C and C ′ are disjoint then
v (C ∪ C ′) ≥ v (C) + v (C ′). We say v is inessential iff

∑m
k=1 v ({k}) = v (N);

inessential means there is no incentive to cooperate.

It is easy to show that if v is non-negative and super-additive, then v is
monotonic, while the converse is not true (e.g. [5, Example 1]). For the rest of
the games in this paper, we will assume v is non-negative, super-additive and
essential (i.e. not inessential).6

Example 3. (Example 1 continued) Suppose if Josh, David or Peter earn no
payoff if they work as individuals, but if any two of them work together they
earn 10 units of payoff, and if all three work together they earn 20 units of payoff.
This v is non-negative, super-additive, not constant-sum, and essential.

5 We use “m” instead of the more traditional “n” for the number of players to avoid
confusion with the neutrality function n : P (A)→ P (A) in argumentation.

6 When combined with super-additivity, it follows that there are two disjoint coalitions
C and C′ such that v(C ∪ C′) > v(C) + v(C′).
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An outcome of a game is the pair (CS,x), where CS is a partition of N
called a coalition structure, and x ∈ Rm is a payoff vector that distributes
the value of each coalition to the players in that coalition. As we have assumed
that v is non-negative, super-additive and essential, then v(N) has the (strictly)
largest payoff among all coalitions by monotonicity. Agents are rational and want
to maximise their payoff, and so they should seek to form the grand coalition.
Therefore, we restrict our attention to outcomes where CS = {N}.

How should the amount v(N) be distributed among the m players? In this
paper, we consider transferable utility games, which allow for the distribution
of v(N) arbitrarily to the m players, e.g. by interpreting v(N) as money, which
all players should desire. This leads to the following properties of payoff vectors
x. We say x := (x1, x2, . . . , xm) is feasible iff

∑
k∈N xk ≤ v(N), efficient iff∑

k∈N xk = v(N) and individually rational iff (∀k ∈ N) v ({k}) ≤ xk. We
call a payoff vector x an imputation iff x is efficient and individually rational;
intuitively, imputations distribute all the money to every agent without waste,
such that every agent earns at least as much as when they work alone. Following
[7], we denote the set of imputations for a game G with IMP (G), or just
IMP if it is clear which cooperative game G we are referring to.

Example 4. (Example 3 continued) As v(N) = 20 (which we now measure in dol-
lars ($), as an example of transferable utility), a feasible payoff vector is (5, 5, 5).
An efficient payoff vector is (10, 5, 5). Notice that both vectors are individually
rational because (∀k ∈ N) v ({k}) = 0. Therefore, (10, 5, 5) is a valid imputation,
in which case Josh receives $10, while David and Peter receive $5 each.

The solution concepts of cooperative games that we will consider are con-
cerned with whether coalitions of agents are incentivised to defect from the grand
coalition.7 Given a game G = 〈N, v〉, let C be a coalition and x,y ∈ IMP . We
say x dominates y via C, denoted x →C y, iff (1) (∀k ∈ C)xk > yk and (2)∑

k∈C xk ≤ v(C). Intuitively, given imputation y, it is possible for a subset of
players to defect from N to form their own coalition C, where (1) they will each
do strictly better because (2) they will earn enough to do so; the resulting payoff
is x. Note that for all C ⊆ N , →C is a well-defined binary relation on IMP .

Example 5. (Example 4 continued) Consider the two imputations (20, 0, 0) and
(12, 4, 4). Clearly, (12, 4, 4) →{2,3} (20, 0, 0), because David (agent 2) and Peter
(agent 3) can defect to {2, 3} and earn 4 + 4 = 8 ≤ v ({2, 3}) = 10, which is
strictly better than both of them getting nothing in the imputation (20, 0, 0).

It is easy to see from the definition of →C that it is irreflexive, acyclic (and
hence asymmetric), and transitive. Further, some important special cases include
→N= ∅ and (∀k ∈ N)→{k}= ∅, i.e. it does not make sense for the grand coali-
tion to defect to the grand coalition, and individual players cannot defect from
N (the latter due to individual rationality). Also, →∅= IMP 2, the total bi-
nary relation on IMP . We say imputation x dominates imputation y, denoted

7 See Section 5 for a brief mention of other solution concepts.
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x → y, iff (∃C ⊆ N) [C 6= ∅, x→C y]. This is a well-defined irreflexive binary
relation on IMP . However, it can be shown that this is not generally transitive,
complete or acyclic (e.g. [26, Chapter 4]). Therefore, each cooperative game gives
rise to an associated directed graph 〈IMP,→〉, called an abstract game [21].

Let I ⊆ IMP be a set of imputations. Following [27], we say I is internally
stable iff no imputation in I dominates another in I. Further, I is externally
stable iff every imputation not belonging to I is dominated by an imputation
from I. A (von Neumann-Morgenstern) stable set is a subset of IMP
that is both internally and externally stable. Taken together, a stable set of
imputations contains the distributions of the amount of money v(N) to the set
of m players that are socially acceptable [27].

We now recapitulate a simplification to coalitional games that does not lose
generality (e.g. [26, Chapter 4]). Let G := 〈N, v〉 and G′ := 〈N, v′〉 be two
games on the same set of players. We say G and G′ are strategically equiv-
alent iff (∃K ∈ R+) (∃c ∈ Rm) (∀C ⊆ N) v′(C) = Kv(C) +

∑
k∈C ck, for c :=

(c1, . . . , cm), and we denote this with G ∼= G′; this is an equivalence relation be-
tween games. Further, the function f : IMP (G)→ IMP (G′) with rule f (x) :=
Kx + c is a digraph isomorphism from 〈IMP (G),→〉 to 〈IMP (G′),→′〉, where
→′ is the corresponding domination relation on IMP (G′). It follows that if S ⊆
IMP (G) is a stable set of G, then its image set f(S) ⊆ IMP (G′) is also a stable
set of G′. By setting 1

K = v(N) −
∑

k∈N v ({k}) and (∀k ∈ N) ck = −Kv ({k})
for this K, then we can transform G = 〈N, v〉 to its (0, 1)-normalised form,
G(0,1) :=

〈
N, v(0,1)

〉
, such that (∀k ∈ N) v ({k}) = 0 and v(N) = 1.

Example 6. (Example 5 continued) We have that c = 0 and K = 1
20 , therefore

v(0,1) (C) = 0 if |C| ≤ 1, v(0,1) (C) = 1
2 if |C| = 2, and v(0,1)(N) = 1.

This means IMP
(
G(0,1)

)
⊆ Rm is the standard (m − 1)-dimensional topo-

logical simplex, which has the set
{

(x1, x2, . . . , xm) ∈
(
R+

0

)m ∑m
k=1 xk = 1

}
.

Corollary 1. As a set, IMP
(
G(0,1)

)
is uncountably infinite.

Proof. Let∼= denote bijection between sets and ↪→ denote an injective embedding
between sets, then we have R ∼= [0, 1] ↪→ IMP

(
G(0,1)

)
⊆ Rm ∼= R, where ↪→

in this case is the injective function with rule t 7→ K (1− t, t, x3, . . . , xm), where
1
K := 1 +

∑m
k=3 xk normalises the output to be on the simplex. By the Cantor-

Schröder-Bernstein theorem [10, Theorem 3.2], IMP
(
G(0,1)

) ∼= R.

Therefore, any abstract game 〈IMP,→〉 has uncountably infinitely many nodes.
From now, we assume all games G have v that are non-negative, super-additive,
not necessarily constant-sum, have transferable utility, and are (0, 1)-normalised.

2.3 From Cooperative Game Theory to Abstract Argumentation

In this section we recap [7, Section 3.1]. We now understand how an abstract
game 〈IMP,→〉, which is also an uncountably infinite digraph, arises from a
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game G. Dung interprets 〈IMP,→〉 as an abstract AF, where each argument is
an argument for a given payoff distribution among the agents, and each attack
denotes the possibility for a subset of agents to defect from the grand coalition.
Corollary 1 states that such an AF has uncountably infinite arguments, but this
is not a problem because Dung’s argumentation semantics and their properties
hold for AFs of arbitrary cardinalities [2,7,28]. Dung then proved that various
methods of resolving conflicts in 〈IMP,→〉 as an AF correspond to meaningful
solution concepts of G. The following result is straightforward to show.

Theorem 1. [7, Theorem 37] Let G be a game and 〈IMP,→〉 be its abstract
game. If we view 〈IMP,→〉 as an AF, then each of its stable extensions is a
stable set of G, and each stable set of G is a stable extension of 〈IMP,→〉.

As stable sets may not exist for AFs, and in particular there are games without
stable sets [11,12], Dung proposed that preferred extensions, as they always exist
[7, Theorem 11(2)], can serve as an alternative solution concept for a game G
in cases where stable sets do not exist, because the properties and motivations
of preferred extensions also capture the imputations that are rational wealth
distributions among the m players [7, Section 3.1].

Further, another important solution concept in cooperative game theory is
the core [8]. Formally, the core of a cooperative game G is the set of imputations
x satisfying the system of inequalities (∀C ⊆ N)

∑
k∈C xk ≥ v(C). Intuitively,

the core is the set of imputations where each agent is receiving at least as much
payoff even if a subset of such agents were to defect to a new coalition (regardless
of how the payoff is shared within that coalition). Therefore, no agent has an
incentive to defect. It can be shown that the core is the subset of imputations
that are not dominated by any other imputation. It follows that:

Theorem 2. [7, Theorem 38] Let G be a game and 〈IMP,→〉 be its abstract
game. If we view 〈IMP,→〉 as an AF, then its set of unattacked arguments
corresponds exactly to the core.

From argumentation theory, we thus conclude the well-known result from coop-
erative game theory that stable sets, if they exist, always contain the core.

Example 7. (Example 6 continued) We have N = {1, 2, 3} and v(C) = 0 if
|C| ≤ 1 else v(C) = 1

2 , and v(N) = 1. The eight possible coalitions C ⊆ N give
rise to the three inequalities x1+x2 ≥ 1

2 , x2+x3 ≥ 1
2 and x3+x1 ≥ 1

2 . Therefore,
the core consists of all imputations x = (x1, x2, x3) whose components satisfy
these three inequalities, for example,

(
1
3 ,

1
3 ,

1
3

)
and

(
1
2 ,

1
2 , 0
)
.

3 Complete Extensions and the Grounded Extension

Given that stable extensions correspond to stable sets, and the set of unattacked
arguments corresponds to the core, do the complete extensions (including the
preferred extensions) and the grounded extension also correspond to solution
concepts in cooperative games? We now show that the answer is yes.
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3.1 Complete Extensions Correspond to Subsolutions

As preferred extensions are a subset of complete extensions, it is natural to ask
whether complete extensions more generally correspond to solution concepts in
cooperative games. In [21], motivated by the general lack of existence of stable
sets [11,12], Roth considered abstract games arising from cooperative games (in
his notation) 〈X,>〉, where X is the set of the game’s outcomes and >⊆ X2

is an abstract domination relation. Let u : P (X) → P (X) be the function
u(S) := X −S+,8 where in this case S+ := {y ∈ X (∃x ∈ S)x > y}. Roth then
defined the subsolution of such an abstract game as follows.

Definition 1. [21, Section 2] Let 〈X,>〉 be an abstract game. A subsolution
is a set S ⊆ X such that S ⊆ u(S) and S = u2(S) := u ◦ u(S).

Immediately we can see that by interpreting 〈X,>〉 as an abstract argumen-
tation framework, subsolutions are precisely the complete extensions.

Theorem 3. Let G = 〈N, v〉 be a game and 〈IMP,→〉 be its abstract game.
When seen as an argumentation framework, the complete extensions 〈IMP,→〉
are precisely the subsolutions.

Proof. S ⊆ IMP is a complete extension of 〈IMP,→〉 iff S ⊆ n(S) and S =
d(S), where n is the neutrality function n(S) = IMP − S+, but as n2 = d [7,
Lemma 45], this is equivalent to saying that S is a subsolution, by identifying
X = IMP , > =→ and u = n.

Roth has shown that every abstract game, and hence every cooperative game,
has a subsolution [21, Theorem 1].9 The ⊆-maximal subsolutions of 〈IMP,→〉
are exactly the preferred extensions of 〈IMP,→〉 when seen as an abstract ar-
gumentation framework. Roth also showed that stable sets are subsolutions, and
hence subsolutions generalise stable sets. This is well known in argumentation
theory as stable extensions are also complete extensions. We can also apply
further results from abstract argumentation theory to infer more properties of
subsolutions. For instance, the core is contained in all subsolutions.

Corollary 2. Every subsolution is a superset of the core.

Proof. Interpreting 〈IMP,→〉 as an argumentation framework, the core corre-
sponds to the set of unattacked arguments, which is d (∅), where d is the defence
function (Section 2.1). As a subsolution S is a complete extension, we know that
d(S) = S. As d is ⊆-monotonic and ∅ ⊆ S, we have d (∅) ⊆ S.

Further, subsolutions have a specific lattice-theoretic structure:

Theorem 4. The family of subsolutions of an abstract game form a complete
semilattice that is also directed-complete.

Proof. This follows from [7, Theorem 25(3)] and [28, Theorem 6.30], respectively.

We will give an example of subsolutions in Section 4 (Example 8).

8 In [21], Roth uses U for this function. Here, we use u to avoid confusion with the set
of unattacked arguments in an AF (defined in Section 2.1).

9 Also, see the abstract lattice-theoretic proof in [20].
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3.2 The Supercore is the Grounded Extension

In [21, Example 5.1], Roth showed that subsolutions are in general not unique
for abstract games; the supercore is one “natural” way of selecting a unique
subsolution.

Definition 2. [21, Section 3] The supercore of an abstract game is the inter-
section of all its subsolutions.

Immediately we can conclude the following.

Theorem 5. The supercore of an abstract game is its grounded extension when
viewed as an argumentation framework.

Proof. This follows from e.g. [7, Theorem 25(5)], or [28, Corollary 6.8].

It follows that the supercore exists and is unique for all abstract games, and
hence cooperative games. Further, the supercore is a special case of a subsolution
because the grounded extension is complete. Also, the supercore contains the
core, because the grounded extension contains all unattacked arguments, by
Corollary 2. We will give an example of the supercore in Section 4 (Example 8).

Therefore, for arbitrary cooperative games, if stable sets exist, they can serve
as the possible sets of recommended payoff distributions, i.e. the “acceptable
standards of behaviour” [27]. If they do not exist, then we may use subsolutions
instead. If we desire a unique subsolution, we can use the supercore.

However, Roth noted that the supercore is empty iff the core is empty. This
corresponds to the well-known result in argumentation theory that the set of
unattacked arguments is empty iff the grounded extension is empty (e.g. [28,
Corollary 6.9]). We can therefore completely characterise cooperative games with
non-empty supercores using the Bondareva-Shapley theorem [3,24]. Let G =
〈N, v〉 be a cooperative game. A function f : P (N) → [0, 1] is balanced iff
(∀k ∈ N)

∑
S⊆N−{k} f (S ∪ {k}) = 1, i.e. if for every player the value under f

of all coalitions containing that player sum to one. We call G balanced iff for
every balanced function f ,

∑
S⊆N f (S) v(S) ≤ v(N). Intuitively, each player k

allocates a fraction of his or her time f (S ∪ {k}) to the coalition v(S), and that
coalition receives a value proportional to that agent’s time spent there.

Theorem 6. (Bondareva-Shapley) A game has a non-empty core iff it is bal-
anced.

It follows that:

Corollary 3. A game has a non-empty supercore iff it is balanced.

Proof. The core of a game is non-empty iff its supercore is non-empty, iff it is
balanced, by the Bondareva-Shapley theorem (Theorem 6).

From both argumentation theory and abstract games in cooperative game
theory, we have the following well-known containment relations between the
solution concepts in cooperative games.
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Theorem 7. Let G be a cooperative game. Its stable sets are ⊆-maximal subso-
lutions, which are subsolutions, and the supercore is also a subsolution.

Proof. Immediate, because in argumentation theory, stable extensions are pre-
ferred, which are complete. Further, the grounded extension is also complete.

3.3 Summary

We summarise the correspondences between Dung’s argumentation semantics
and the solution concepts of cooperative games in the Table 1, including the
results presented in this paper.

Table 1. A Table Showing Concepts in Abstract Argumentation and the Correspond-
ing Concept in Cooperative Games

Abstract Argumentation Cooperative Game Reference

Set of arguments A Set of imputations IMP [7, Section 3.1]

Attack relation R Domination relation → [7, Section 3.1]

Argumentation Framework 〈A,R〉 Abstract Game 〈IMP,→〉 [7, Section 3.1]

Unattacked arguments The Core [7, Thm. 38]

The Grounded Extension The Supercore Thm. 5

Complete Extensions Subsolutions Thm. 3

Preferred Extensions ⊆-maximal Subsolutions [7, Section 3], Thm. 3

Stable Extensions Stable Sets [7, Thm. 37]

Further, we have shown that the supercore exists, and is unique and non-empty,
iff the game is balanced (Corollary 3). Finally, the family of subsolutions form
a complete semilattice that is also directed-complete (Theorem 4). These cor-
respondences allow us to apply ideas from argumentation to cooperative game
theory, as we will in the next section.

4 Convex three-player Cooperative Games and
Well-Founded Argumentation Frameworks

Having shown how abstract argumentation can be used in cooperative game
theory, we now investigate the relationship between well-founded AFs and convex
games, because in both cases the semantics (respectively, solution concepts)
coincide.

4.1 Convex Games and Coincidence of Solution Concepts

An important type of cooperative game is that of a convex game [25]. Formally,
G = 〈N, v〉 is convex iff (∀C,C ′ ⊆ N) v (C ∪ C ′) + v (C ∩ C ′) ≥ v(C) + v(C ′).
Clearly, convex games are super-additive. This property is equivalent to [6,
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Proposition 2.8]: for all S, T ⊆ N , if T ⊆ S, then (∀k ∈ N − S) v (T ∪ {k}) −
v(T ) ≤ v (S ∪ {k}) − v(S). Intuitively, this means as a coalition grows in size,
there is more incentive for agents not already in the coalition to join. Shapley
calls this a “band-wagon” effect [25]. Further, if G ∼= G′ and G is convex, then
G′ is also convex.10 The key property of convex games that we focus on is:

Theorem 8. [25, Theorem 8] The core of a convex game is stable.

From our results in Section 3, we can immediately show the following.

Corollary 4. If G is convex, then the set of unattacked arguments of its AF
〈IMP,→〉 is the only stable extension.

Proof. Immediate from [7, Theorems 37 and 38].

Convex games exhibit a coincidence of the solution concepts so far considered.

Corollary 5. If G is convex, then its core is also its supercore, which is also its
unique subsolution.

Proof. If G is convex, then viewing its abstract game 〈IMP,→〉 as an AF, its
set U of unattacked arguments is the unique stable extension [7, Theorem 37].
But if U is stable, then U is also the grounded extension - else the grounded
extension, as a superset of U , is not conflict-free. Thus U is also the supercore
of G (Theorem 5). As U is unique, it is the unique subsolution of G.

4.2 Well-Founded Argumentation Frameworks

Now recall from abstract argumentation theory we have a sufficient condition
for an AF to have all four of Dung’s argumentation semantics coincide.

Theorem 9. [7, Theorem 30] If 〈A,R〉 is well-founded, i.e. there is no A-
sequence11

{
ai
}
i∈N such that (∀i ∈ N)R(ai+1, ai) [7, Definition 29], then its

grounded extension is the unique stable, complete and preferred extension.

Given that the consequences of Theorem 9 and Corollaries 4 and 5 are the
same, one may ask whether the AFs arising from convex games is in some sense
“stronger” than well-founded AFs. Indeed, convex games refer to unattacked
arguments U , while well-founded AFs refer to the grounded extension, a superset
of U . Could it be that convex games always give rise to well-founded AFs? We
answer this question in the following section.

10 This can be shown by writing out the definition of convex for the coalitions in G′

given the definition of strategic equivalence in Section 2.2, and then applying the
inclusion-exclusion principle for sets.

11 Let X be a set, an X-sequence is a function f : N → X written as
{
xi
}
i∈N, so

(∀i ∈ N)xi ∈ X.
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4.3 Three-Player Convex Games

To make this problem more tractable, we specialise to three-player convex games.
We will assume the following canonical form without loss of generality:

Theorem 10. [13, Slide 19] Every essential three-player game that is not nec-
essarily constant-sum is strategically equivalent to the (0, 1)-normalised three-
player game

〈
N, v(0,1)

〉
where v(0,1)(C) = 0 if |C| ≤ 1, v(0,1)(N) = 1, and for

a, b, c ∈ [0, 1], v(0,1) ({1, 2}) = a, v(0,1) ({2, 3}) = b and v(0,1) ({3, 1}) = c.

Convexity constrains the parameters a, b and c as follows.

Corollary 6. Every essential three-player convex game G that is not necessarily
constant-sum is strategically equivalent to the (0, 1)-normalised game

〈
N, v(0,1)

〉
defined in Theorem 10 iff a + b ≤ 1, b + c ≤ 1 and c + a ≤ 1.

Proof. (Sketch) (⇒) If G is convex and G ∼=
〈
N, v(0,1)

〉
, then

〈
N, v(0,1)

〉
is

convex (Footnote 10). There are 23 = 8 distinct coalitions, which we can use
to write out the inequality in the definition of convex to conclude the resulting
three inequalities on a, b and c. (⇐) If

〈
N, v(0,1)

〉
is a game such that a, b and

c satisfies the three inequalities, then
〈
N, v(0,1)

〉
is convex (Section 4.1) and any

game strategically equivalent to it, in particular G, is also convex.

Example 8. (Example 7 continued) Our game is convex, as a = b = c = 1
2 , by

Corollary 6. Therefore, the core of this game, calculated in Example 7 to be the
set of imputations x = (x1, x2, x3) such that x1 + x2 ≥ 1

2 , x2 + x3 ≥ 1
2 and

x3 + x1 ≥ 1
2 , is also the supercore, the only subsolution, and the only stable set.

The next result shows that three-player convex games do not always give rise
to well-founded AFs.

Theorem 11. The game in Examples 1 to 8 is an essential, non-constant-sum
three-player convex game whose AF is not well-founded.

Proof. Example 1 states this game is three-player, Example 8 states that this
game is convex, and Example 3 states that this game is essential and not
constant-sum. Let 〈IMP,→〉 denote the abstract game from our examples, now
seen as an AF. Consider the following IMP -sequence

{
xi
}
i∈N where

xi :=
(
xi
1, x

i
2, x

i
3

)
=

(
1

4
− 1

2(i + 2)
,

1

4
− 1

2(i + 2)
,

1

2
+

1

i + 2

)
. (1)

Clearly, this is a well-defined imputation for all i ∈ N, because the three compo-
nents sum to 1 and each component is non-negative.

We now show that (∀i ∈ N) xi+1 → xi, and hence 〈IMP,→〉 is not a well-
founded AF. We only need domination with respect to the coalition {1, 2}. For
any i ∈ N, we have xi+1 →{1,2} xi because (1) the agents 1 and 2 do strictly

better, i.e. xi+1
1 > xi

1 and xi+1
2 > xi

2, which in our case is

1

4
− 1

2(i + 2)
>

1

4
− 1

2(i + 1)
⇔ 1

i + 2
<

1

i + 1
⇔ i + 2 > i + 1, (2)
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which is true for all i ∈ N. Furthermore, (2) agents 1 and 2 earn enough payoff
after defecting such that they can strictly better, because

xi+1
1 + xi+1

2 =
1

4
− 1

2(i + 2)
+

1

4
− 1

2(i + 2)
≤ v(0,1) ({1, 2}) =

1

2
. (3)

Equation 3 is equivalent to

1

2
− 1

i + 2
≤ 1

2
⇔ 1

i + 2
≥ 0, (4)

which is true for all i ∈ N. Therefore, (∀i ∈ N) xi+1 → xi for 〈IMP,→〉 of the
convex game where a = b = c = 1

2 . Therefore, the abstract game from our
running example game seen as an AF is not well-founded.

Therefore, not all convex games give rise to well-founded AFs. This result clarifies
that the coincidence of solution concepts due to convexity and the coincidence
of argumentation semantics due to well-foundedness are of different natures.

5 Discussion and Related Work

In this paper, we have proved that for the uncountably infinite AFs that arise
from cooperative games, the complete extensions (respectively the grounded ex-
tension) correspond to that game’s subsolutions (respectively, supercore), by
Theorem 3 (respectively, Theorem 5). This allows for more results from argu-
mentation theory to be applied to cooperative game theory, for example, the
lattice-theoretic structure of the complete extensions (Theorem 4) or when the
supercore is empty (Corollary 3). Both convex games and well-founded AFs
result in a coincidence of, respectively, solution concepts and argumentation
semantics, but convex games do not necessarily give rise to well-founded AFs
(Theorem 11). To the best of our knowledge, these contributions are original.12

These efforts strengthen the “correctness” of abstract argumentation by demon-
strating its ability to reason about problems of societal or strategic concern.

Our first contribution completes the correspondence between Dung’s original
four argumentation semantics with solution concepts in cooperative games. We
can use this correspondence in future work to investigate the relationship be-
tween further abstract argumentation semantics not mentioned in [7] (e.g. those
mentioned in [2]) and solution concepts in cooperative game theory. We can also
investigate continuum AFs more generally, where the set of arguments A ∼= R,
as cooperative game theory provides a natural motivation for them.

Our second contribution can be developed further. Intuitively, convex games
do not have to be well-founded due to the continuum nature of the simplex
and the order-theoretic underpinnings of domination, and hence one may divide

12 The authors have checked all papers citing [21], which is the first paper defining
the supercore and subsolutions from the abstract game of a cooperative game, and
found no papers on argumentation theory among them.
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extra payoffs into smaller and smaller units. But then one might justifiably
ask whether it still makes sense for the first two agents to be be sensitive to
infinitesimal improvements in their payoffs when i is very large, and thus still
maintain their desire to defect. We can attempt to answer this in future work.

There has been much work investigating the relationship between argumen-
tation and game theory more generally. For example, Rahwan and Larson have
used argumentation theory to analyse non-cooperative games [17] and study
mechanism design [16]. Matt and Toni, and Baroni et al. have applied von Neu-
mann’s minimax theorem [27] to measure argument strength [1,15]. Riveret et
al. investigate a dialogical setting of argumentation by representing the dialogue
in game-theoretic terms, allowing them to determine optimal strategies for the
participants [19]. Roth et al. articulate a prescriptive model of strategic dialogue
by using concepts from game theory [22]. Our paper is distinct from these as it
applies ideas from argumentation theory to investigate cooperative games.

This paper builds on results from Dung’s seminal paper [7, Section 3.1]. There
have been works applying ideas from cooperative game theory to non-monotonic
reasoning and argumentation, specifically the Shapley value [23]. For example,
Hunter and Konieczny have used the Shapley value to measure inconsistency
of a knowledge base [9]. Bonzon et al. have used the Shapley value to measure
the relevance of arguments in the context of multiagent debate [4]. The Shapley
value, as a solution concept, is concerned with measuring the payoff to each agent
given their marginal contribution in each coalition, averaged over all coalitions;
we do not consider it here in this paper as we are concerned with solution
concepts to do with defection rather than marginal contributions. Future work
can build on the correspondences in this paper by considering which further
solution concepts from cooperative games may be relevant for argumentation.
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