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Abstract. We investigate the argumentation frameworks (AFs) that arise from
multi-player transferable-utility cooperative games. These AFs have uncountably
infinitely many arguments; arguments represent alternative payoff distributions to
the players. We examine which of the various properties of AFs (from Dung’s 1995
seminal paper) hold; we prove that these AFs are never finitary, never well-founded,
always controversial and never limited controversial. We hope that this will encour-
age further exchange of ideas between argumentation and cooperative games.
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1. Introduction

Abstract argumentation theory is the branch of artificial intelligence (AI) concerned with
resolving conflicts between disparate claims in a transparent and rational manner, while
abstracting away from the contents of such claims by focussing on how they disagree
(e.g. [6,12]). The resulting directed graph (digraph) representation of arguments (nodes)
and the attacks between them (directed edges), called an abstract argumentation frame-
work (AF), resolves conflicts by selecting suitable subsets of arguments, called exten-
sions; this has been used to further understand and unify many areas within and outside
of AI (see, e.g. [6,12]), where a situation can be represented by some AF such that the
resulting extensions correspond to solutions for that situation; this gives a dialectical per-
spective to the situation that has been applicable to many practical domains (e.g. [11]).

Moreover, the “correctness” of argumentation theory has been shown by demon-
strating that a correspondence exists between abstract argumentation theory and coop-
erative game theory (e.g. [5]), the branch of game theory (e.g. [20]) where agents that
interact strategically can also work together under binding contracts [5, page 7] to earn
more payoff than they can otherwise. This correspondence was first articulated in [6,
Section 3.1], and then developed in [22], which further reinforces the applicability of
concepts in abstract argumentation to problems of societal concern, but also allows for a
cross-fertilisation of concepts between argumentation and cooperative games.

Abstract argumentation theory has mostly considered AFs that have a finite number
of arguments (e.g. [1]). AFs that have an infinite number of arguments have not been
considered as often, but they have been implicitly investigated in that all the results in
[6] also hold for infinite AFs. Properties of sets of winning arguments in infinite AFs

1Corresponding Author: Department of Informatics, King’s College London, Bush House, Strand Campus,
30 Aldwych, WC2B 4BG, London, United Kingdom. E-mail: peter.young@kcl.ac.uk.

Computational Models of Argument
H. Prakken et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200524

403

mailto:peter.young@kcl.ac.uk


were further investigated in [3], albeit in an abstract setting. It has been shown in [22]
that uncountably infinite (continuum) AFs arise naturally from cooperative games. In
this paper, we study these continuum AFs in their own right by asking whether various
properties defined in [6, Section 2] hold for these AFs. We prove that these AFs fail to
possess several desiderata due to the density of the continuum, specifically finitariness
(all arguments have finitely many attackers), well-foundedness (there are no infinitely
long “backwards” chains of attackers), non-controversy (no argument can simultaneously
(indirectly) attack and defend other arguments), and limited controversy (there are no
infinite chains of controversies); this makes precise the claim that these AFs are non-
trivial, because one cannot invoke these properties to reduce the multiplicity of solutions.

The paper is structured as follows. In Section 2 we recap the relevant aspects of
cooperative game theory and abstract argumentation theory. In Section 3, we investigate
the properties of the continuum AFs arising from cooperative games and present our
main results. We conclude with related and future work in Section 4.

2. Background

Notation: If X is a set, its power set is P (X) and its cardinality is |X |. N (N+) is the
set of (resp. positive) natural numbers, with |N| =: ℵ0. R (R+

0 / R+) denotes the set of
all (resp. non-negative / positive) real numbers, all with cardinality 2ℵ0 . For a,b ∈R, the
open interval from a to b is the set (a,b) := {x ∈ R a < x < b}. For n ∈ N, the n-fold
Cartesian power of X is Xn, e.g. X2 = X ×X . For sets Y and Z, and functions f : X → Y
and g : Y → Z, g ◦ f : X → Z is the composition of f then g. X ↪→ Y denotes there is
an injection from X to Y , including the case X ⊆ Y . For a function f : X → R, f ≥ 0
abbreviates (∀x ∈ X) f (x)≥ 0. An X-sequence is a function N→ X , denoted as {xk}k∈N.

2.1. Cooperative Game Theory

We review the basics of cooperative game theory (see, e.g. [5,22]). Given m ∈ N
+, the

set of players or agents is N := {1,2,3, . . . ,m}. Clearly, |N| = m. A coalition is any
set C ⊆ N, where the empty coalition is ∅ and the grand coalition is N itself; each
such C denotes that the players in C are cooperating under some contract. The valuation

function v : P (N)→ R such that v(∅) = 0; v(C) is C’s payoff (in arbitrary units) as a
result of the agents in C coordinating their strategies as agreed; this measures how “good”
each C is. A (cooperative) (m-player) game (in normal form) is the pair G := 〈N,v〉.

The following properties are standard in the literature for v. We say v is non-

negative iff v ≥ 0. We say v is monotonic iff (∀C,C′ ⊆ N) [C ⊆C′ ⇒ v(C)≤ v(C′)].
We say v is constant-sum iff (∀C ⊆ N)v(C) + v(N −C) = v(N). We say v is super-

additive iff (∀C,C′ ⊆ N) [C∩C′ =∅⇒ v(C∪C′)≥ v(C)+ v(C′)]. We say v is inessen-

tial iff ∑m
k=1 v({k}) = v(N). For the rest of the games in this paper, we will assume that v

is non-negative, super-additive and essential (i.e. not inessential). Intuitively, this means
there is an incentive to cooperate such that agents working together will earn strictly
more (as a coalition) than when working separately.

Given v, what coalitions will form? A coalition structure, CS, is a partition of N.
As each coalition C earns a payoff v(C) ≥ 0, we are interested in asking which ways
of dividing v(C) amongst the players k ∈ C are “sensible”. In this paper, we consider
transferable utility (TU) games, which allows for any distribution of v(C) to the players
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in C.2 An outcome of a game is a pair (CS,x), where CS is a coalition structure and
x∈R

m is a payoff vector that distributes the value of each C ∈CS to each k ∈C. As usual
in cooperative games (e.g. [5]), we focus on the case where CS = {N}, i.e. where all
agents work together to form the grand coalition, and consider how the resulting payoff
v(N) can be distributed to each of the m players via the vector x.

How should v(N) be distributed amongst the m players? We say the payoff vector
x := (x1, . . . ,xm) ∈ R

m is feasible iff ∑k∈N xk ≤ v(N), efficient iff ∑k∈N xk = v(N), in-

dividually rational iff (∀k ∈ N)v({k}) ≤ xk and an imputation iff x is efficient and
individually rational. We denote the set of imputations for a game G with IMP(G), or
just IMP if G is clear from context [6]. If G is inessential, then IMP(G) is a singleton
set by individual rationality, consisting of just (v({1}),v({2}). . . . ,v({m})), Otherwise,
IMP(G) is uncountably infinite; we focus on essential games to avoid this trivialisation.3

The solution concepts of cooperative games that we will consider are concerned
with whether coalitions of agents are incentivised to defect from the grand coalition
because they can earn strictly more payoff. Given a game G = 〈N,v〉, let C ⊆ N and
x,y ∈ IMP. We say x dominates y via C, denoted x →C y, iff (1) (∀k ∈C)xk > yk and
(2) ∑k∈C xk ≤ v(C), i.e. the agents are (1) strictly better off in C because (2) they will be
earning enough as a coalition to be able to split the earnings among themselves. We call C
the defecting coalition. It is easy to see that for any C, the binary relation →C on IMP is
irreflexive, acyclic, antisymmetric and transitive. Further, it can be shown that →N= ∅,
(∀k ∈ N)→{k}=∅ and →∅= IMP2 (the total relation on IMP). It follows that if m < 3,
→C= ∅ for any coalition C. The relation → is irreflexive, but not in general complete,
transitive or acyclic (e.g. [19, Chapter 4]). Each cooperative game thus gives rise to
an associated digraph, 〈IMP,→〉, called an abstract game. The domination relation is
empty for m < 3, so we will consider m ≥ 3 to avoid this trivialisation.

We now review the solution concepts of cooperative games that are relevant to this
paper.4 Let I ⊆ IMP. Define the forward set of I to be I+ := {y ∈ IMP (∃x ∈ I)x → y}.
If I = {x}, then we write x+ := {x}+. Dually, we define the backward set of I, I− :=
{y ∈ IMP (∃x ∈ I)y → x}, and x− is when I = {x}. Define a function U : P (IMP)→
P (IMP) to be U(I) = IMP− I+. We say I is a (von-Neumann-Morgenstern) stable

set iff I = U(I) [20]. We say I is a subsolution iff I ⊆ U(I) and I = U2(I) := U ◦U(I)
[14]. We say I is the supercore iff I is the ⊆-least subsolution [14]. We say I is the core

iff I = {x ∈ IMP x− =∅}, i.e. the set of all undominated imputations [7]. Lucas has
shown that stable sets may not exist for cooperative games [9,10], although subsolutions,
the supercore and the core always exist [13,14,15], but the core can be empty [4,18]
exactly when the supercore is empty [14,21,22]. Each of these solution concepts offer
alternative “socially acceptable” ways of distributing payoff to the players [20]. We now
give two examples to illustrate some of these concepts.

Example 2.1. [6, page 336] Let N = {1,2,3} and v(C) = 0 if |C| ≤ 1, and v(C) = 2
if |C| ≥ 2. We show that I = {(1,1,0),(1,0,1),(0,1,1)} is a stable set. Showing that
I ⊆U(I) is equivalent to showing that no two elements in I dominate each other, which is
true because we cannot have two components of x ∈ I being strictly greater than the two

2The formalism of N and v : P (N)→ R is different for non-TU games, see (e.g.) [5, Chapter 5].
3This corrects a minor error in [22, Corollary 1], where the assumption of m ≥ 2 was omitted.
4These are defection-based solution concepts, whereas solution concepts based on marginal contributions

(e.g. [17]) are currently outside the scope of this work.
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corresponding components of y ∈ I, and considering two components suffices because
→C=∅ if |C|= 1 or C = N. To show that U(I)⊆ I, it is equivalent to showing that every
imputation x = (x1,x2,x3) ∈ IMP− I is attacked by some imputation in I. By definition,
we have 0 ≤ xk ≤ 2 for all k ∈ N and x1+x2+x3 = 2. Either (1) x3 = 0, (2) x3 > 1 or (3)
x3 ∈ (0,1). (1) implies that x1 + x2 = 2, but as x /∈ I, WLOG assume x1 < 1 and x2 > 1,
then (1,0,1)→{1,3} x. Similarly, if x1 > 1 and x2 < 1, then (0,1,1)→{2,3} x. (2) means
x1 + x2 < 1 hence (1,1,0)→{1,2} x. (3) means x1 + x2 < 2. If x1 ≥ 1, then x2 < 1 hence
(0,1,1)→{2,3} x. If x1 < 1 then x2 ≥ 1 so (1,0,1)→{1,3} x. In all cases, some imputation
in I dominates x. Therefore, I is a stable set.

Example 2.2. [14, Example 5.1] Consider N = {1,2,3} with v({1,2}) = v({3,1}) =
v(N) = 1, and for all other S, v(S) = 0. We claim that I := {(1,0,0)} is the core and
that it is disconnected w.r.t. →. Suppose (x1,x2,x3)→C (1,0,0) for some C ⊆ N, which
is only possible for |C| = 2. As x1 + x2 + x3 = 1 and xk ≥ 0 for k = 1,2,3, we cannot
have x1 > 1 and hence 1 /∈ C, so the only possible coalition is C = {2,3}, but then
v({2,3}) = 0, hence 0 ≤ x2 + x3 ≤ 0, which means x2 = x3 = 0; this violates the dom-
ination condition x2,x3 > 0, hence for all x ∈ IMP, x �→ (1,0,0), therefore (1,0,0) is
amongst the undominated imputations. To show that (1,0,0) is the only undominated
imputation, consider (x1,x2,x3) /∈ I, hence for some ε > 0, x1 = 1− ε and x2 + x3 = ε .
Either (1) one of x2, x3 is zero or (2) neither are zero. In case (1), WLOG say x2 = 0,
then (x1,x2,x3) = (1− ε,0,ε) which is dominated by

(
1− ε

2 ,
ε
2 ,0

)
with defecting coali-

tion {1,2}. In case (2), (x1,x2,x3) = (1− ε,x2,ε − x2) for x2 > 0, which is dominated
by

(
1− 2ε

3 ,x2 +
ε
3 ,

ε
3 − x2

)
with defecting coalition {1,2}. Therefore, I is the core. Now

suppose (1,0,0)→C (x1,x2,x3), but we know that x2,x3 ≥ 0 so we cannot have 0> x2,x3,
therefore 2,3 /∈ C, hence C = {1} is the only possibility, but →{k}= ∅ for all k ∈ N.
Therefore, (1,0,0) �→ x for all x ∈ IMP. Hence (1,0,0) is disconnected from all other
imputations w.r.t. →.

2.2. Abstract Argumentation Theory

Recall that an (abstract) argumentation framework (AF) is a digraph 〈A,R〉, where
A is the set of arguments and R ⊆ A2 is the attack relation [6], where (a,b) ∈ R,
alternatively denoted as R(a,b), means argument a disagrees with argument b. Let
S ⊆ A for the remainder of this subsection. Define the forward set of S to be S+ :=
{b ∈ A (∃a ∈ S)R(a,b)}. The neutrality function n : P (A) → P (A) is defined as
n(S) := A− S+. We say S is a stable extension iff S = n(S). We say S is a complete

extension iff S ⊆ n(S) and S = n2(S) := n ◦ n(S). We say S is a preferred extension

iff it is a ⊆-maximal complete extension. We say S is the grounded extension iff it is
the ⊆-least complete extension. We say S is the set of all unattacked arguments iff
S = {a ∈ A a− =∅}, where S− = {a ∈ A (∃b ∈ S)R(b,a)} and a− := {a}−. Stable ex-
tensions may not exist for AFs, although complete extensions always exist. Grounded,
complete, preferred and stable extensions are collectively called the Dung semantics,
and each defines a way of resolving the conflicts represented by R.

We say an AF 〈A,R〉 is finitary iff (∀a ∈ A) |a−| < ℵ0. An AF is well-founded

iff there is no A-sequence {ak}k∈N such that (∀k ∈ N)R(ak+1,ak); if an AF is well-
founded, then its grounded extension is stable [6, Theorem 30] and therefore there is
only one subset of winning arguments. For a,b ∈ A, we say a is indirectly attacking

(defending) b iff there is an odd (respectively, even)-length path from a to b. We say a is

A.P. Young et al. / Continuum Argumentation Frameworks from Cooperative Game Theory406



controversial with respect to b iff a both indirectly attacks and indirectly defends b. We
say a is controversial iff (∃b ∈ A)a is controversial w.r.t. b. An AF is controversial iff it
has a controversial argument, else it is uncontroversial. An AF is limited controversial

iff there is no A-sequence {ak}k∈N such that (∀k ∈ N)ak+1 is controversial w.r.t. ak.
By interpreting 〈IMP,→〉 as an AF, it has been shown that Dung’s abstract argumen-

tation semantics correspond to the solution concepts of cooperative games:
Abstract Argumentation Cooperative Game Reference

Argumentation Framework 〈A,R〉 Abstract Game 〈IMP,→〉 [6, Section 3.1]

All unattacked arguments The Core [6, Theorem 38]

The Grounded Extension The Supercore [22, Theorem 5]

Complete Extensions Subsolutions [22, Theorem 3]

Preferred Extensions ⊆-maximal Subsolutions [6, Section 3], [22, Theorem 3]

Stable Extensions Stable Sets [6, Theorem 37]
Table 2.1. Summarising the Correspondence Between Abstract Argumentation and Cooperative Game Theory

3. Some Properties of these Continuum Argumentation Frameworks

Having recapped how 〈IMP,→〉 can be interpreted as an AF with uncountably infinitely
many arguments, we now study these AFs in their own right, specifically whether these
AFs satisfy or fail to satisfy the various properties defined by Dung in [6, Section 2],
which we have recapped in Section 2.2. We prove that these AFs are not finitary, not well-
founded, not limited controversial and not uncontroversial. This is due to the continuum
nature of IMP arising from transferable utility, and shows that these AFs are not trivial
in that we cannot appeal to these properties to conclude other properties that may reduce
the multiplicity of the sets of winning arguments [6, Section 2].

Before we begin, let us recapitulate a simplification that does not lose general-
ity. Let 〈N,v〉 be a game with abstract game 〈IMP,→〉. We can convert it to its (0,1)-
normalised form, which is the game

〈
N,v(0,1)

〉
, via the following affine transforma-

tion: v(0,1)(C) := Kv(C)+∑k∈C ck, where 1
K := v(N)−∑k∈N v({k}) and (∀k ∈ N)ck :=

−Kv({k}). It follows that (∀k ∈ N)v(0,1) ({k}) = 0 and v(0,1)(N) = 1. Further, the ab-
stract game arising from the (0,1)-normalised form is digraph-isomorphic to 〈IMP,→〉,
and hence the solution concepts mentioned in Section 2.1 are preserved [2, Definition
2.7]. WLOG, we may assume that IMP is the standard (m − 1)-dimensional sim-

plex, {(x1, . . . ,xm) ∈ R
m (∀1 ≤ k ≤ m)xk ≥ 0,∑m

k=1 xk = 1}. Further, we will invoke the
Cantor-Schröder-Bernstein (CSB) theorem (see, e.g. [8, Theorem 3.2]), which states
that for (not necessarily finite) sets A and B, if A ↪→ B ↪→ A, then A and B have the same
cardinality, in which case we write A ∼= B. We assume standard results from set theory
such as (0,1)∼= R∼= R

m for every m ∈ N
+.

First recall that the simplex is closed under affine combinations of two imputations
x and y, as imputations are vectors in R

m that can be added and scaled. Further, the
imputations strictly in between x and y can be parameterised uniquely by (0,1).

Lemma 3.1. Let t ∈ (0,1) and x,y ∈ IMP be distinct. We have that (1− t)x+ ty ∈ IMP
and (0,1) ↪→ IMP with rule t �→ (1− t)x+ ty is a well-defined injection.

Proof. t ∈ (0,1) implies t,(1− t) > 0. (Individual rationality) As each component is of
the form (1−t)xk+tyk, we have (1−t)xk+tyk ≥ 0 because xk,yk ≥ 0, for all k= 1, . . . ,m.
(Efficiency) ∑m

k=1 [(1− t)xk + tyk] = (1− t)∑m
k=1 xk + t ∑m

k=1 yk = 1− t + t = 1.
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Assume for contradiction that t �→ (1− t)x+ ty is not injective. Therefore, there
exists t, t ′ ∈ (0,1) distinct such that (1−t)x+ty=(1−t ′)x+t ′y. Basic algebra means we
have (t ′ − t)x = (t ′ − t)y, but as t ′ − t �= 0, it follows x = y, which is a contradiction.

Clearly, this family of imputations between x and y contains uncountably infinitely many
imputations, as the open line segment is a continuum.

Corollary 3.2. The image set of the function defined in Lemma 3.1 is uncountable.

Proof. By CSB, R∼= (0,1) ↪→{(1− t)x+ ty ∈ IMP t ∈ (0,1)} ⊆ IMP ⊆ R
m ∼= R.

The continuum nature of the simplex allows us to “interpolate” a domination relation
along the line segment joining an imputation and another imputation it dominates.

Theorem 3.3. (Interpolation theorem) For x,y ∈ IMP and C ⊆ N, if x →C y, then
(∀t ∈ (0,1))x →C (1− t)x+ ty →C y.

Proof. Let t ∈ (0,1) be arbitrary. We prove x →C (1− t)x+ ty and (1− t)x+ ty →C y.
For the first domination, as x →C y, we know that ∑k∈C xk ≤ v(C). Further,

(∀k ∈C)xk > yk. Let k ∈C be arbitrary, then we have xk > (1− t)xk + tyk ⇔ txk > tyk ⇔
xk > yk (as t > 0), which is true. Therefore, x →C (1− t)x+ ty.

For the second domination, as x →C y, we know that ∑k∈C xk ≤ v(C). Fur-
ther, (∀k ∈C)xk > yk. The second property means ∑k∈C xk > ∑k∈C yk. Therefore,
∑k∈C yk ≤ v(C). Now consider the quantity ∑k∈C [(1− t)xk + tyk]. This is equal to
(1− t)∑k∈C xk + t ∑k∈C yk ≤ (1− t)v(C)+ t ∑k∈C yk ≤ (1− t)v(C)+ tv(C) = v(C). There-
fore, ∑k∈C [(1− t)xk + tyk] ≤ v(C). Now for k ∈ C, (1− t)xk + tyk > yk ⇔ (1− t)xk >
(1− t)yk. As t < 1, we have xk > yk, which is true. Therefore, (1− t)x+ ty →C y.

Theorem 3.3 also has the following consequences for whether the concepts in [6] apply:
such AFs are not finitary (Corollary 3.4), not well-founded (Corollary 3.6), not uncon-
troversial (Corollary 3.7) and not limited controversial (Corollary 3.8).

Corollary 3.4. If 〈IMP,→〉 has a non-empty domination relation, then it is not finitary.

Proof. If →�=∅, then there are distinct x,y ∈ IMP such that for some non-empty C ⊆ N,
x→C y. Therefore, {(1− t)x+ ty ∈ IMP t ∈ (0,1)}⊆ y− ⊆ IMP, which means y∈ IMP
has uncountably infinitely many attackers. The result follows.

We now generalise Theorem 3.3 to be able to compare two interpolated imputations
along the open line segment between them.

Theorem 3.5. (Double interpolation theorem) For x,y ∈ IMP and C ⊆ N, if x →C y,
then (∀s, t ∈ (0,1)), if s < t, then x →C (1− s)x+ sy →C (1− t)x+ ty →C y.

Proof. For z := (1− s)x+ sy →C y, let u := t−s
1−s ∈ (0,1). Clearly, (1−u)z+uy = (1−

t)x+ ty, and by Theorem 3.3, (1− s)x+ sy →C (1− t)x+ ty →C y.

It follows from this that all such continuum AFs are not well-founded.

Corollary 3.6. For 〈IMP,→〉, if →�=∅, then it is not well-founded.
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Proof. As →�=∅, then consider x →C y. By Theorem 3.5, we have s, t ∈ (0,1) such that
if s< t, then x→C (1−s)x+sy→C (1−t)x+ty→C y. Define zn :=

(
1− 1

2n

)
x+ 1

2n y, for
n ∈N

+. Clearly, zn+1 →C zn by Theorem 3.5. Therefore, the IMP-sequence {zn}n∈N+ is
an infinite backwards attacking chain, thus 〈IMP,→〉 is not well-founded.

Additionally, Theorem 3.3 shows that there is always a controversial argument.

Corollary 3.7. For 〈IMP,→〉, if →�=∅, then the AF is not uncontroversial.

Proof. As x→C y means x (indirectly) attacks y. We choose t = 1
2 ∈ (0,1) in Theorem 3.3

such that x →C
1
2 (x+y)→C y, thus x indirectly defends y. Therefore, x is controversial

w.r.t. y, which means 〈IMP,→〉 is not uncontroversial.

We show the weaker result of limited controversial is also never true.

Corollary 3.8. For 〈IMP,→〉, if →�=∅, then the AF is not limited controversial.

Proof. We construct an IMP-sequence {zk}k∈N such that (∀k ∈ N)zk+1 is controversial
w.r.t. zk. Consider the infinite backwards attack chain from Corollary 3.6, such that for
each k ∈ N and zk+1 →C zk, we apply Theorem 3.3 with t = 1

2 , x = zk+1 and y = zk to
show that zk+1 also defends zk, and hence zk+1 is controversial w.r.t. zk, for all k ∈N.

In summary, we have used the property of affine closure in a simplex to interpolate the
domination x →C y such that every payoff between x and y is attacked by x and attacks
y. It follows that 〈IMP,→〉 is not finitary because y has uncountably infinitely many at-
tackers. Further, 〈IMP,→〉 is not well-founded because one can have an infinite back-
wards attack sequence from y with limit x. Also, every intermediate point between x and
y means that x is controversial w.r.t. y, and interpolation means 〈IMP,→〉 is also not
limited controversial. From the perspective of abstract argumentation, the failure of these
properties means we cannot invoke some results of [6, Section 2] to infer further proper-
ties of these AFs, e.g. that being uncontroversial means all preferred extensions are sta-
ble [6, Theorem 33(2)]. This means continuum AFs like those arising from cooperative
games are non-trivial objects to analyse.

4. Conclusions, Future Work and Related Work

In this paper, we have investigated the continuum AFs arising from m-player essential
transferable-utility cooperative games. In these AFs, the arguments represent the payoff
distributions of all m players working together , and the attacks represent defection of
some of the m players where they would each earn strictly more payoff . These AFs are
“continuum” as they contain uncountably infinitely many arguments. We have shown
that these AFs have several properties that are unlike finite AFs: they are not finitary,
not well-founded, not uncontroversial, and not limited controversial. These results are
important because they entail that such continuum AFs are challenging to deal with as
we cannot simply use the results of [6, Section 2] to infer further properties.

As mentioned in Section 3, future work includes investigating conditions in which
these continuum AFs are coherent and relatively grounded, which is challenging as our
results show we cannot make use of simplifications such as [6, Theorem 33]. This could
potentially contribute to cooperative game theory as articulating the conditions on 〈N,v〉
for when stable sets exist in 〈IMP,→〉 is non-trivial; this is partly why game theorists
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moved away from cooperative games in the late 1970s [16]. Future work will investigate
what further insights argumentation theory can offer.

As mentioned in Section 2, this paper builds on [6, Section 3.1] and [22]. However,
we are not the first to investigate infinite AFs; they were investigated in [6] and furthered
in [3] where general existence and uniqueness questions for extensions in infinite AFs
are shown in an abstract setting. In contrast, this paper has provided an “authentic” ex-
ample of infinite AFs that arise from cooperative games. We hope that future work will
encourage further exchanges of ideas between argumentation and cooperative games.
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