
The Influence of Memory in Multi-Agent Consensus

David Kohan Marzagão,1* Luciana Basualdo Bonatto, 2† Tiago Madeira, 3 Marcelo Matheus Gauy,
Peter McBurney 1

1 King’s College London
2 University of Oxford

3 University of São Paulo

Abstract

Multi-agent consensus problems can often be seen as a se-
quence of autonomous and independent local choices be-
tween a finite set of decision options, with each local choice
undertaken simultaneously, and with a shared goal of achiev-
ing a global consensus state. Being able to estimate proba-
bilities for the different outcomes and to predict how long it
takes for a consensus to be formed, if ever, are core issues for
such protocols.
Little attention has been given to protocols in which agents
can remember past or outdated states. In this paper, we pro-
pose a framework to study what we call memory consensus
protocol. We show that the employment of memory allows
such processes to always converge, as well as, in some sce-
narios, such as cycles, converge faster. We provide a theoreti-
cal analysis of the probability of each option eventually win-
ning such processes based on the initial opinions expressed
by agents. Further, we perform experiments to investigate net-
work topologies in which agents benefit from memory on the
expected time needed for consensus.

Introduction
Many applications of distributed computing involve au-
tonomous entities making individual, independent assess-
ments of some situation, based only on limited or local
knowledge, in repeated decision rounds until a global con-
sensus decision emerges, if it ever does. The most famous
of these applications nowadays is probably the decision-
making process used in blockchain or distributed ledger ap-
plications, but computational applications long predated the
development of Bitcoin in 2008 (Nakamoto et al. 2008; Tsit-
siklis 1984; Olfati-Saber, Fax, and Murray 2007). Applica-
tions continue to emerge, for example, in the design of col-
lective decision-making processes for groups of autonomous
robots or drones (Yan, Jouandeau, and Cherif 2013; Ismail
and Sariff 2018).

*This work relates to Department of Navy award (Award No.
N62909-18-1-2079) issued by the Office of Naval Research. The
United States Government has a royalty-free license throughout the
world in all copyrightable material contained herein.

†This work was carried out with the support of CNPq
(201780/2017-8).
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many of these decision processes can be modelled as
a process between autonomous agents played on a graph,
where the nodes of the graph represent the autonomous en-
tities, and the edges between nodes represent connections or
information transfers between these entities. The outcomes
of the decisions are represented by a set of finite states or
labels, often called opinions or colours, which are the pos-
sible decision options for each agent at each round of the
process. The local nature of agent knowledge is manifested
by the topology of the graph, in that nodes are typically only
connected to some other nodes, and not to all others. Thus,
an agent or node may know at the start of each round the
states at the previous round of the nodes to which it is con-
nected, and then use this local knowledge to decide what
state it should adopt at the current round. Agent decisions
are made synchronously. Synchronous consensus processes
have been extensively studied (e.g. Martinez et al. (2005);
Lynch (1996); Cao, Xiao, and Wang (2015); Olfati-Saber,
Fax, and Murray (2007)). The protocol will typically assume
that all agents have the same desired final goal, which is that
all nodes choose a particular state, i.e., reach a consensus.
These protocols also typically assume that the agents are
fungible; in other words, that they all use the same algo-
rithm to decide what state to adopt at each round and are
not otherwise internally distinguishable (although they may
have different numbers of connections). For the context of
this paper, we assume all agents act sincerely, without mal-
ice or whimsy.

Core issues for such protocols involve being able to com-
pute the consensus probabilities for each of the different out-
comes and to predict how long it takes for a consensus to
be formed. A known feature of synchronous consensus pro-
cesses, however, is that, for some network topologies (e.g.,
even cycles), they may encounter deadlocks, i.e., configura-
tions from which no consensus can be reached (Hassin and
Peleg 2001, Sec 2.1). Moreover, some network topologies
(e.g., odd cycles) may have structure locally similar to the
ones where deadlocks are encountered and the consensus
process may take a long time to converge as a result. We
aim to address these issues by considering that agents may
remember and take into account previous rounds in their
decision-making.

This paper asks what are the effects, if any, on the like-
lihood and speed of convergence of agents having a mem-

ory of some past states of the current process. In what we
call memory consensus protocols, agents may copy either
their neighbours’ past states or their current ones, according
to different probabilities. We will show that, with memory,
agents are not only able to avoid deadlocks in networks such
as even cycles, but also converge in fewer rounds for sev-
eral graph structures. We use a mix of probabilistic analysis
and simulation to explore these questions. The main contri-
butions of the paper are:

1. A framework to analyse the synchronous multi-agent con-
sensus protocol when agents remember previous rounds.

2. A theoretical and complete analysis of the probabilities
of each colour winning a consensus process with memory
given the initial states. We also show that such processses
always converge to a consensus.

3. A comprehensive exploration of different graph structures
showing in which situations the employment of memory
reduces the expected number of rounds for convergence.

Background and Main Definitions
In this section, we present concepts and results from the lit-
erature that will be used in the subsequent sections. We first
introduce the classical version of consensus protocol used in
this paper, also known as voter model (Donnelly and Welsh
1983; Nakata, Imahayashi, and Yamashita 1999; Hassin and
Peleg 2001; Cooper and Rivera 2016), in which agents have
no memory of past rounds. We then propose a definition of
stochastic consensus processes in which memory is taken
into account.

Memoryless Consensus Protocol
The memoryless consensus protocol defines a round-based
consensus process on a strongly connected directed graph
G = (V,E).1 In such processes agents are represented by
nodes in this graph. At each round, each node has a colour
associated to it, representing the respective agent’s current
state (or opinion). Their goal is to reach consensus, i.e., a
situation where every agent is in the same state. To that end,
at each round, all agents update their state synchronously
based on the colour of their out-neighbours.2 The probability
that v copies colour of node u in a given round is represented
by the weight of edge (v, u). The weights of edges starting at
a given node are assumed to be positive and to sum to 1. We
adopt the notation w(v, u) = 0 if (v, u) /∈ E, and note that
self loops are allowed and thus v may adopt its own colour.
Once reached, a consensus is stable. The term ‘memoryless’
comes from the fact that, at time t, agents decide on a colour
for time t+ 1 based only on other states at time t, and keep
no record of previous states (not even their own previous
colours).

Let X = {c1, . . . , ck} be the set of all possible colours
on a consensus process. A configuration on a graph G =
(V,E) is a vector s ∈ XV such that s(v) represents v’s

1Henceforth, we assume all graphs are strongly connected un-
less stated otherwise.

2For precision, we consider that agents change their state at the
end of each round, after all nodes have made their decisions.

1

1
4

3
4

1
3

2
3

v1 v2 v3

Figure 1: A Possible Initial Configuration of a Memoryless
Consensus Process on a Graph G.

colour in configuration s. Formally, a process is a sequence
of random variables {St}t≥0, with St+1 ∈ XV being a con-
figuration generated based on St and the algorithm described
above. We say colour i wins the process if a configuration
St = s, such that s(v) = i for all v, is reached.

Example 1. Consider the graph shown in Figure 1, in which
V = {v1, v2, v3} and X = {red, blue}. Assume it shows a
process in its initial state. Thus, S0(v1) = S0(v2) = blue,
whereas S0(v3) = red. The update algorithms are such that
v2 will copy v1’s colour w.p. 1

4 , and v3’s w.p. 3
4 . Agent v3,

on the other hand, has a probability of 2
3 of keeping its own

colour, otherwise copies v2’s. Finally, v1 behaves determin-
istically in this graph by always copying v2’s state.

There are graphs for which the probability of reaching
consensus is not 1. Such graphs have what can be seen as
‘deadlocks’. As an extreme example, deadlocks may occur
in directed cycles, where there is an edge from every node
only to it’s clockwise neighbour. Any non-consensus state
will generate another non-consensus state in the subsequent
round by simply rotating colours anti-clockwise. The idea of
deadlocks is formalised in Definition 1.

Definition 1 (Well-behaved Graphs). A graph is said to be
well-behaved if consensus processes on it reach a consensus
with probability 1 for any initial configuration.

Proposition 1, taken from Kohan Marzagão et al. (2017a),
gives the necessary and sufficient conditions for which di-
rected graphs are well-behaved. It also applies to undirected
graphs by replacing each edge by a pair of antiparallel ones.

Proposition 1 (Kohan Marzagão et al. 2017a). A directed
graph G is well-behaved if and only if the greatest common
divisor (gcd) of the lengths of all cycles in G is equal to 1.

Example 2. Classical examples of undirected graphs that
are not well-behaved are cycles of even length, paths, and
trees. More generally, from Proposition 1, an undirected
graph is well-behaved if and only if it is not bipartite.

In this context, previous work (Cooper and Rivera 2016)
computed the probabilities of each colour winning the pro-
cess, also known as the fixation probability of a given colour.
They show that such probabilities depend on the stationary
distribution, µ, of the out-matrix of the graph G. To better
understand the effect of each node within a graph, we will
denote µ(v) as the influence of a vertex v. Observe that
the out-matrix H of the graph G can be seen as the transi-
tion matrix of a time homogeneous Markov chain (e.g., see
Chapter 6, Grimmett et al. (2001)) representing the proba-

bilities of one round in the consensus process (Cooper and
Rivera 2016).

If G is strongly connected, this Markov chain is irre-
ducible and finite, so there exists a unique stationary dis-
tribution µ of H , that is, there is a row vector µ such that
µH = µ. We call the values µ(v) the influence of the ver-
tex v in the consensus protocol. The winning probabilities
of each colour can be determined by the initial configuration
only and are given by the following proposition.
Proposition 2 (Cooper and Rivera 2016). Consider a con-
sensus process on a well-behaved (and strongly connected)
graph G (i.e., with finite consensus time for all initial con-
figurations), with associated adjacency matrix H and µ its
unique stationary distribution. Assume the initial configura-
tion is given by s ∈ {c1, . . . , ck}V . Then, we have that the
winning probability of colour ci is:

P(colour ci wins|S0 = s) =
∑

v∈V,S(v)=ci

µ(v)

Example 3. Consider the initial configuration discussed in
Example 1. The adjacency matrix of this example is given by 0 1 0

1
4 0 3

4

0 1
3

2
3


and its stationary distribution is µ =

(
1
14

4
14

9
14

)
.

Let s be the initial configuration depicted in Figure 1.
The graph G is well-behaved, as can be immediately con-
cluded from the fact that it contains a loop, so Proposi-
tion 2 can be applied, and thus the winning probabilities
are: P (blue wins|S0 = s) = µ(v1) + µ(v2) = 5

14 , and
P (red wins|S0 = s) = µ(v3) = 9

14 .
Note that although the number of red vertices in this ini-

tial configuration is smaller than the number of blue ver-
tices, the influence of the vertex v3 is much higher than the
influence of v1 and v2. For this reason, red has a higher
probability of winning the process.

Memory Consensus Protocol
We now introduce the main concept to be explored in this
work. The main difference of the process with memory is
that each node may take into account the previous states of
its neighbours. The notion of consensus also needs to be up-
dated.
Definition 2 (Memory Consensus Protocol). A m-memory
consensus protocol generalises the notion of memoryless
protocol by changing the rule with which nodes update their
colour. At each round t and for 0 ≤ i ≤ m, each node
v chooses a time t − i, with probability pi, and copies the
colour of one of its out-neighbours proportionally to the
weight of the edge in G. Given the initial states Ri = si
for 0 ≤ i ≤ m, let {Rt}t≥m+1 be a random variable that
records the colours of the set of nodes of a graph G at time
t. The configuration Rt+1 therefore depends on the states
Rt, . . . , Rt−m. We call this a memory consensus process
(p0, . . . , pm) on G.

The notion of consensus in memory process needs to be
updated when compared to the memoryless one, since a pro-
cess may move away from a consensus in a current round by
agents remembering past states. We then say a memory con-
sensus process reached consensus if and only if it reached
a stable consensus, i.e., all nodes have the same colour and
there is no positive probability that a node changes colour in
any following round.

In Definition 2, we have assumed that the initial (m+ 1)-
states are fixed arbitrarily, thus enabling them-memory con-
sensus processes to be considered from that state onwards.
There might be situations, however, where such records are
not available, for example, when a process has just started.
For that reason we need a convention on how the memory
will be built up. In this work, we will set the convention that
if less than (m + 1)-states are known, then the unknown
states are treated as if they are all equal to the first (‘oldest’)
state R0 and we act as if we had m + 1 states in memory.
Throughout this paper, we will look closer at memory pro-
cesses which start with only one given initial state, as we
formally define below.

Definition 3 (Early Memory Process). We define the early
memory process (p0, . . . , pm) on G starting at s ∈ XV as
the memory process (p0, . . . , pm) on G with initial configu-
rations R0 = · · · = Rm = s.

Framework and Theoretical Results for
Winning Probabilities

Analysing processes with memory can be hard since stan-
dard Markov chain tools, such as the ones described in
Proposition 2, cannot be applied. In this section, we propose
a framework to study processes with memory by creating an
equivalent process which is itself memoryless.

We use this framework to study whether the deadlocks
discussed in the previous section can be avoided in memory
processes. Further we study the probabilities of each colour
to win an ongoing m-memory process taking into account
the current round together with the previous m configura-
tions. Finally, we compare the probabilities of consensus of
a given colour between the memoryless and early memory
settings.

We summarise the discussion above as a sequence of four
questions to be explored in this section.

Q1 Reduction to Memoryless Case: Can we reduce a
memory consensus process to a memoryless one in order
to make use of previously known results?

Q2 Well-Behaved Graphs: Can deadlocks arise in mem-
ory processes?

Q3 Who Wins: Given an arbitrary memory consensus pro-
cess, what is the probability of each colour winning?

Q4 Memory vs Memoryless Processes: Given the same
initial state for both an early memory and a memoryless
consensus process, how do winning probabilities com-
pare?

A Framework to Study Memory Processes
We start by addressing Question Q1. The intuition is to
transform a non-Markovian process (due to dependency on
several previous states), into a Markovian one. From a graph
G, we create a new graph, Ḡ, that captures the previous
m rounds of a process on G. For that, Ḡ contains m extra
copies of the set of nodes ofG (each copy is called a layer of
Ḡ), to represent pastm configurations ofG. Edges are added
to simulate desired behaviour of nodes: nodes representing
past states simply copy the state of their ‘future’, i.e., nodes
that are one layer above. Moreover, edges leaving nodes that
represent the present may ‘access’ the information stored in
the layers below. A formal definition of a memory graph is
given below.

Definition 4 (m-Memory Graph). Let G = (V,E) be a di-
rected weighted graph, with V = {v1, . . . , vn}. For each
m ≥ 0 and p0, . . . , pm > 0 with

∑
pi = 1, we define a

directed weighted graph Ḡ = (V̄ , Ē) called the associated
m-memory graph with probabilities (p0, . . . , pm). The set
V̄ is given by

{vij | i = 0, . . . ,m and j = 1, . . . n},

and we say that the collection {vij : j = 1, . . . , n} is the ith
layer of the graph Ḡ. The edges in Ē are of three types:

• Horizontal edges: if (vj , vk) ∈ E with weight w then
(v0j , v0k) ∈ Ē with weight p0w.

• Descending edges: if (vj , vk) ∈ E with weight w then
(v0j , vik) ∈ Ē with weight piw, for all i > 0.

• Ascending edges: for every i > 0 and j, there is an edge
from vij to v(i−1)j with weight 1;

Note that, by definition, the only 0-memory graph associ-
ated to a graph G is G itself. To help understanding graph
Ḡ, we presents its adjacency matrix. Let H denote the adja-
cency matrix of the graphG. Then it follows from the defini-
tion that the adjacency matrix of the associated m-memory
graph with probabilities (p0, . . . , pm) is given by

H =



H0 H1 . . . Hm

I 0 0 0

0
. 0

0 0 I 0


(1)

where each Hi = piH for i = 0, . . . ,m, and the vertices of
Ḡ are ordered v01, v02, . . . , vmn.

Now, we motivate the definition of the associated memory
graph Ḡ of G, by showing that a (memoryless) consensus
process in Ḡ a the memory consensus process (p0, . . . , pm)
onG are equivalent. To define this equivalence precisely, we
need the following definition.

Definition 5. Let {R0, . . . , Rm} be the first m rounds of a
memory consensus process (p0, . . . , pm) on a graph G. We

1
3

1
12

3
12

1
9

2
9

1 1 1

1
3

1
12

3
12

1
9

2
9

1 1 1
1
3

1
12

3
12

1
9

2
9

v01 v02 v03

v11 v12 v13

v21 v22 v23

Figure 2: A Possible Initial Configuration of a Consen-
sus Process on the 2-Memory Graph Ḡ with Probabilities
(1

3 ,
1
3 ,

1
3) Associated to G.

define {R̄t}t≥m the associated memoryless consensus pro-
cess as the process on Ḡ, the associated m-memory graph
with probabilities (p0, . . . , pm). The initial state R̄m(vij) of
a vertex vij in the ith layer of Ḡ is defined to be Rm−i(vj).

We can now show an example of a memory consensus
process on a memory graph by extending our original graph
example from Figure 1.

Example 4. If G is the graph considered in Example 1,
then Figure 2 shows the 2-memory graph with probabilities
(1

3 ,
1
3 ,

1
3) associated toG in which colours refer to a possible

initial configuration of the process on Ḡ.

Settling Question Q1, the following proposition shows
that {R̄t}t≥m from Definition 5 is indeed the memoryless
equivalent to our memory protocol from Definition 2. The
following proposition shows that the two processes have the
same distribution at every round t ≥ m.

Proposition 3. Let {Rt}t≥m+1 be a memory consensus pro-
cess (p0, . . . , pm) on a graph G and let {R̄t}t≥m be the as-
sociated memoryless consensus process on Ḡ. Let si be a
configuration on G, for i = 0, . . . ,m. Then, for any t ≥ m:

P (∪mi=0(Rt−i = si)|R0, . . . , Rm) = P (R̄t = s̄|R̄m),

where s̄ is the configuration on Ḡ where layer i has config-
uration si.

Proof. We proceed by induction on t. For t = m, it is trivial
matter as both distributions are deterministic. Assuming the
induction hypothesis, i.e., that for t = t0 it holds that:

P (∪mi=0(Rt0−i = si)|R0, . . . , Rm) = P (R̄t0 = s̄|R̄m)

for every fixed configuration si, for i = 0, . . . ,m. We now
prove the induction step from t0 to t0+1. By Definition 2 we
know that, for every fixed configuration si, for i = 0, . . . ,m:

P (∪mi=0(Rt0+1−i = si)|R0, . . . , Rm) =

=
∑
ri

[
P (∪mi=0(Rt0−i = ri)|R0, . . . , Rm)·
P (∪mi=0(Rt0+1−i = si)| ∪mi=0 (Rt0−i = ri))

]

where the sum is over all possible choices of configurations
ri. Note that if r̄ is such that layer i of Ḡ receives configura-
tion equal to ri then we have that:

P (∪mi=0(Rt0−i = ri)|R0, . . . , Rm) = P (R̄t0 = r̄|R̄m)

by the induction hypothesis. Moreover, inspecting the ad-
jacency matrix of Ḡ and G it is trivial to conclude that
P (∪mi=0(Rt0+1−i = si)| ∪mi=0 (Rt0−i = ri)) is equal to
P (R̄t0 = s̄|r̄). Combining the two we obtain the desired
result, by noting that we have
P (R̄t0+1 = s̄|R̄m) =

∑
r̄ P (R̄t0 = r̄|R̄m)P (R̄t0+1 =

s̄|R̄t0 = r̄).

Corollary 1 (Convergence Times and Probabilities). A
memory process {Rt}t≥m+1 on G and a process {R̄t}t≥m
on Ḡ, under the conditions of Proposition 3, have the same
expected number of rounds until consensus, and the same
probability of convergence for each colour c ∈ X .

We now have all the tools necessary to analyse the mem-
ory consensus protocol while addressing Questions Q2 to
Q4. This is done in the section that follows.

Results on Probabilities of Consensus
The concept of the memory graph associated to a memory
process allows us to translate standard results about memo-
ryless consensus processes to this new context. In this sec-
tion, we show how one can use standard results to discuss
convergence of memory processes and their probabilities of
consensus for each colour.

We start by answering Question Q2 by showing that m-
memory consensus processes always converge (as long as,
of course, m > 0). This is the first key benefit arising from
the memory protocol compared to their memoryless counter-
part. In particular, memory processes in all graphs discussed
in Example 2 now reach consensus with probability 1.

Proposition 4 (Memory Graphs are Well-Behaved). Let Ḡ
be a m-memory graph with m > 0 associated to a memory
process in a (strongly connected) graph G. Then, Ḡ is well-
behaved.

Proof. The proof is a consequence of Proposition 1. Con-
sider a cycle in G, which exists because G is strongly con-
nected. Denote the cycle by (v1, v2, ...vk). Then, Ḡ con-
tains the cycle (v01, v02, ...v0k) of length k. Moreover, Ḡ
also contains the cycle (v01, v12, v02, ...v0k), of length k+1.
Therefore we have cycles in Ḡ of lengths k and k+1, which
implies that the gcd of the length of all cycles is 1.

To settle Question Q3, we determine the probability of
consensus for m-memory processes. That is, given the cur-
rent and also the previous m rounds of a m-memory con-
sensus process, we give exact probabilities of each colour
winning.

Theorem 1. Let {Rt}t≥m+1 be a memory consensus pro-
cess (p0, . . . , pm) on a (strongly connected) graph G with
initial states Ri = si, for i = 0, . . . ,m. Let µ be the sta-
tionary distribution of G. Then for any colour c ∈ X , the

winning probability is given by

P (cwins|R0 = s0, . . . , Rm = sm) =

=

m∑
i=0

1− p0 − · · · − pi−1

σ

 ∑
sm−i(vj)=c

µ(vj)


where σ = p0 + 2p1 + 3p2 + · · ·+ (n+ 1)pn.

Proof. By Proposition 3, the probability

P (cwins|R0 = s0, . . . , Rm = sm)

is equal to the probability of c winning the associated mem-
oryless process on Ḡ, the associated m-memory graph with
probabilities (p0, . . . , pm) and initial configuration s̄, as de-
scribed in Definition 5. We will calculate this probability us-
ing Proposition 2.

Recall that the adjacency matrix of the process Ḡ is given
by (1). Let µ be the stationary distribution of the graph G.
Using that Hi = piH and µH = µ, it is easy to check that
the stationary distribution of Ḡ is given by

µ̄ =
1

σ
(v, α1v, α2v, . . . , αnv) (2)

where αi = 1− p0 − · · · − pi−1 and σ = p0 + 2p1 + 3p2 +
· · ·+ (n+ 1)pn.

Then by Proposition 2 the probability of colour c winning
the memoryless process on Ḡ with initial configuration s̄ is

P (cwins on Ḡ|R̄m = s̄) =

=
∑

v∈V̄ ,s̄(v)=c

µ̄(v) =
m∑
i=0

∑
s̄(vij)=c

µ̄(vij)

=
m∑
i=0

∑
s̄(vij)=c

αi

σ · µ(vj) =
m∑
i=0

αi

σ

(∑
sm−i(vj)=c

µ(vj)

)

Example 5. Let Figure 2 be the initial configuration s̄ on the
memory graph Ḡ associated to a memory consensus process
(1

3 ,
1
3 ,

1
3) on the graph G of Figure 1. Using the stationary

distribution for G which was computed on Example 3 and
Theorem 1, we get that the stationary distribution of Ḡ is
given by the vector

µ̄ =
1

2

(
1

14

4

14

9

14

1

21

4

21

9

21

1

42

4

42

9

42

)
.

The probabilities of consensus are given by Proposition 2:

P (blue wins|R̄0 = s̄) =

=
1

2
(µ(v1) + µ(v2)) +

1

3
(µ(v2) + µ(v3)) +

1

6
· µ(v3)

=
1

2
· 5

14
+

1

3
· 13

14
+

1

6
· 9

14
=

25

42

Analogously, we conclude that P (red wins|R̄0 = s̄) = 11
28

and P (green wins|R̄0 = s̄) = 1
84 .

In the example just presented, the past rounds had an ef-
fect on which colour is more likely to win the memory pro-
cess. But what exactly is the influence of the past? In other
words, what is the combined influence of nodes in a layer
compared another? The answer to that was given in Equa-
tion (2). For the scenario in Example 5, the combined influ-
ence of nodes in layer 0 is 1

2 , layer 1 is 1
3 , and layer 2 is 1

6 .
Note that influences are in descending order. Indeed, for any
m-memory process, layer i always has more influence than
layer j for j > i for any values p0, . . . , pm.

Finally, we compare memoryless processes with their cor-
respondent early memory version with regards to probabili-
ties of convergence (Question Q4).

Corollary 2. An early m-memory process and a memory-
less process starting at the same initial configuration on a
well-behaved graph have the same probabilities of conver-
gence for each colour.

Proof. Let P (c wins on G|S0 = s) be the probability of c
winning the memoryless process on G. Consider an early
memory process (p0, . . . , pm) on G with starting configu-
ration S0 = s, for any choice of p0, . . . , pm. By Defini-
tion 3, we know Rm−i(vj) = c if and only if s(vj) = c.
Let αi = 1 − p0 − · · · − pi−1, then applying the result of
Theorem 1, the probability of c winning is

P (cwins on Ḡ|R̄m = s̄) =

(∑
s(vj)=c

µ(vj)

)(
m∑
i=0

αi

σ

)
=

=
∑

s(vj)=c

µ(vj) = P (c wins on G|S0 = s)

where the second to last equality follows from the fact that
m∑
i=0

αi =
m∑
i=0

(pi + pi+1 + · · ·+ pn) = σ.

An equivalent result to Corollary 2 is that the influence
of a node in a memoryless process on G is the same as the
sum of influences of this same node and its m copies on
Ḡ. This is an advantage of memory when compared to the
strategy of avoiding deadlocks on memoryless processes by
including new edges, as the latter may change the influence
of the nodes in the process.

A Note on a More General Memory Protocol For read-
ability, motivation, and presentation, we have introduced a
memory protocol assuming all agents have the same proba-
bilities of remembering past rounds, and not allowing agents
to remember nodes that they are not connected to in the
present. To lift these assumptions is to consider a memory
graph in which nodes representing the present may be ar-
bitrarily linked with past layers, as long as the weight of
edges adds up to 1. The probabilities of consensus of this
framework can be established using Proposition 2, as long
as the graph is well-behaved. If not, techniques from Ko-
han Marzagão et al. (2017a) can be used to apply analo-
gous results for anym-memory process on arbitrary directed
graphs G.

Topology Average Consensus Time Median
clique 1, 420± 1, 049 1, 127
grid 3, 711± 2, 827 2, 943

bintree 15, 033± 11, 589 11, 681
biclique 131, 939± 222, 579 3, 060

cycle 438, 232± 434, 180 305, 546.5

Table 1: Average, standard deviation, and median for mem-
oryless consensus times on graphs of size n = 1023 over
4000 runs.

Empirical Analysis of Duration of Processes
In this section we investigate, through simulations, how the
duration (measured in number of round until consensus)
of early 1-memory process compares to their memoryless
counterparts. We will restrict ourselves to processes on undi-
rected graphs, a set X = {red, blue}, and only one layer of
memory (m = 1). When considering the 1-memory con-
sensus process (p0, p1) on undirected graph G, we assume
that, with probability p0 (resp. p1), a node copies the present
(resp. past) colour of a neighbour chosen uniformly at ran-
dom. The investigation of duration of m-memory processes
for m ≥ 2 is subject to future work.

Recall that the condition for a memory process to reach a
(stable) consensus is stronger than for memoryless ones: in
am-memory process, we not only need all nodes to have the
same state in the present round, but also in all the previous
m rounds, so there is no chance that an agent changes colour
based on a past state of a neighbour.

We have chosen different standard network structures to
analyse: cliques (complete graphs), cycles, bicliques (com-
plete bipartite graphs with an extra loop at the larger size),
full binary trees (with a loop at the root), and grids on a
torus (two dimensional grids with connected ends). We have
added loops to the full binary tree and to the biclique because
we need the graphs to be well-behaved (otherwise, they may
never reach a consensus). This selection offers a wide range
of graph densities, as well varying averages for consensus
times in memoryless processes, as will be discussed shortly.

We perform two experiments on the network topologies
described above. Each experiment compares a memoryless
process with a given initial configuration with its early 1-
memory counterpart with the same initial state, similarly to
what was discussed in the context of Question Q4. To avoid
bias given by the initial state, each set of experiments (with
and without memory) has a different random starting point,
with each node being red or blue with equal probability. For
a given pair (p0, n) and a graph type, we denote the the ra-
tio between the average consensus time of the 1-memory
process and the average consensus time of its memory-
less counterpart by τ . Thus, τ > 1 (resp. τ < 1) indicates
memory processes take longer (resp. shorter) than memory-
less ones. In the first experiment, we fix the number of nodes
n, while varying p0 to explore the effect of memory for these
different values. The second experiment fixes a value of p0

to investigate how improvement of memory changes with n.
In experiment 1, we have recorded the duration of 4000

0.2 0.4 0.6 0.8 1

0

1

2

3

4

p0

τ biclique bintree clique cycle torus

Figure 3: Experiment 1. A comparison of 1-memory pro-
cesses and their memoryless counterparts, i.e., τ values (y-
axis) for a fixed n = 1023 and different values of p0 (x-axis)
and five network topologies.

simulations for graphs of size n = 1023, for 30 different
values of p0, ranging uniformly from 0.1 to 1. The value
n = 1023 was chosen to allow for binary trees to be full
and the torus to have similar dimensions (31 and 33). Ta-
ble 1 shows the average times for consensus in the memo-
ryless case (i.e., p0 = 1) as well as the standard deviation
and median. Note that in consensus processes standard devi-
ations are particularly high, of the order of magnitude of the
average itself. For that reason, we calculate the median for
each graph type, showing that it is well below the average.
The full data, including the process duration distributions,
all data points, and analogous plots with the median instead
the average (which show less pronounced but similar results)
can be found at https://github.com/tmadeira/consensus.

Results of Experiment 1 are shown in Figure 3 with x-axis
indicating the different values of p0, whereas the values on
the y-axis represent τ . Note that taking p0 = 1 is the same as
having a memoryless process, so we have omitted this value
from the graph in Figure 3.

For all values of p0, there is a considerable improvement
in the average consensus time for memory processes on the
cycle and biclique, the latter being the type that benefits the
most from memory, irrespective of p0, with ratios ranging
from 0.01 (for p0 = 0.97) to 0.04 (for p0 = 0.1). For pro-
cesses on a grid and binary trees, there is no gain for small
values of p0, but for larger values of p0, the consensus times
on the torus is improved in the presence of memory.

Based on the results of Figure 3, we conjecture that graphs
which are in some sense close to bipartite are those which
benefit from memory. A precise definition of ‘closeness’
to bipartite graphs is subject to future work. The intuition,
however, is that in memoryless processes on graphs close to
bipartite graphs (the biclique with an extra loop being the
most extreme example), the partitions behave almost inde-
pendently: if there are more red nodes in a given partition
and more blue nodes in the other, then it becomes very likely
that this picture will be inverted in the following round. With
the addition of memory, on the other hand, this vicious cycle
can more easily be broken, thus decreasing the average con-
sensus times. The median being substantially lower than the

0 500 1,000 1,500 2,000

0

0.5

1

n

τ biclique bintree clique cycle torus

Figure 4: Experiment 2. A comparison of 1-memory pro-
cesses and their memoryless counterparts, i.e., τ values (y-
axis) for fixed p0 = 0.9 and different values of n (x-axis)
and five network topologies.

average for bicliques further supports the hypothesis above:
whenever partitions tend to the same colour, consensus is
very quick. When they do not, however, it may take several
orders of magnitude longer.

We now turn to Experiment 2 that looks at how τ changes
when n varies. To do this, we fix the probability p0 = 0.9.
Our choice is motivated by the result of previous experiment
that indicated 0.9 is among the best values for improving the
average convergence time when compared to memoryless
processes. The setup is analogous to the one in Experiment
1, with the difference that we now average over 104 simula-
tions for each n and each graph type. The values chosen for
n depend on the type of graph. The number of nodes on a
full binary tree is always 2k − 1, so we used for our test all
such values for k ∈ {3, 11}. On the other hand, the number
of vertices for a well-behaved square grid on a torus needs
to be a perfect square of an odd number. So for testing all
other types of network structures, we used all such numbers
from 9 to 2025.

The results are shown in Figure 4 with x-axis indicating
the number of nodes n, whereas the values on the y-axis
represent the ratio τ . We can see from this experiment that,
for all graph types but cliques, the benefit of memory in-
creases as n increases, but soon stabilises for n ≈ 800. This
supports the claim that improvements in convergence times
given by memory are not a feature only of small graph sizes.
To show robustness of improvement from the use of mem-
ory, we performed a two-sample t-test statistic for means and
rejected a null hypotheses of no difference in means between
the memory and memoryless processes with> 99.99% con-
fidence. We considered all graph classes, apart from clique,
and chose n as the lowest value among the ones tested that
was greater than 1000 in each class.

Related Work
Memoryless consensus protocol is also known as voter
model and have been extensively studied in the litera-
ture (Donnelly and Welsh 1983; Nakata, Imahayashi, and
Yamashita 1999; Hassin and Peleg 2001; Aldous and Fill
1995). Linear voting model, described in (Cooper and

Rivera 2016), are a generalization of this process. Those en-
compass all typically studied forms of voting models such
as push or pull models. Previous work has characterised
graphs for which this process converges almost surely (Ko-
han Marzagão et al. 2017a), computed the winning proba-
bilities for each colour and given bounds on the convergence
time (Oliveira 2012; Oliveira et al. 2013; Cooper and Rivera
2016; Kohan Marzagão et al. 2017b; Kanade, Mallmann-
Trenn, and Sauerwald 2019; Oliveira and Peres 2019).

In the context of control theory, protocols where agents re-
member their past states have been previously studied (Cao,
Ren, and Chen 2008; Li et al. 2010). In the context of multi-
agent networks, protocols where agents have memory were
also explored (Pasolini, Dardari, and Kieffer 2020). Unlike
ours, such protocols are in a continuous setting. In the con-
text of vehicle coordination, they model each vertex with
a certain position and associated speed. In the context of
multi-agent networks, a scalar measurement is propagated
so that the mean measurement is computed. We note that the
authors find a similar result to the one here, namely, the ad-
dition of memory speeds up the convergence of their agents.
There is also a generalization of the voter model (Zhong
et al. 2016) which considers agents with memory of past
states. In their protocol and topologies studied, the authors
find memory to be detrimental to consensus. When fault
of systems are considered, authors in (Mizrahi and Moses
2008) studied processes known as ‘continuous consensus’.
In these, nodes may keep information about the past in order
for all processor to reach a common value.

Conclusions and Future Work
This paper introduced a generalisation of synchronous con-
sensus protocols, by the addition of memory of previous
states influencing the decisions of nodes at each round. Prob-
abilities of consensus for each starting configuration are
computed by using previously known results and it is shown
empirically that memory is beneficial to convergence on typ-
ical network topologies, such as cycles.

Future work may explore theoretical convergence times
in different graph structures when memory is introduced.
Note that, while general upper bounds from previous work
(e.g. (Cooper and Rivera 2016)) apply to the memory case
via the memory graph, these bounds are too loose and do not
even exhibit the observed qualitative behaviour that cycles,
say, benefit from memory. On the experimental side, it is key
to establish whether there exist graphs in which 2-memory
processes converge faster on average than do 1-memory pro-
cesses. A discussion of the tradeoff between adding layers
and gain in speed is also pertinent for the use of memory
framework in realistic settings. Although we only analyse a
consensus protocol similar to the voter model, our frame-
work (Definition 4) may be used to analyse other models
such as majority rule (Mossel, Neeman, and Tamuz 2014) or
average consensus (Tsitsiklis, Bertsekas, and Athans 1986).
Another interesting issue would be to characterise which
graph structures benefit from the addition of memory and
which do not. Lastly, while most of our theoretical results
apply to the case of three or more colours, a more in-depth

empirical analysis of consensus times in this more general
case would be interesting.

Code and Data
The repository containing the code, data, and plots asso-
ciated to this project can be found at https://github.com/
tmadeira/consensus.

Acknowledgements
We thank Thiago R. Oliveira and Josh Murphy for their help-
ful comments on earlier versions of this paper.

References
Aldous, D.; and Fill, J. 1995. Reversible Markov chains and
random walks on graphs. Monograph. Berkeley, CA, USA.
Cao, M.; Xiao, F.; and Wang, L. 2015. Event-based second-
order consensus control for multi-agent systems via syn-
chronous periodic event detection. IEEE Transactions on
Automatic Control 60(9): 2452–2457.
Cao, Y.; Ren, W.; and Chen, Y. 2008. Multi-agent consensus
using both current and outdated states. IFAC Proceedings
Volumes 41(2): 2874–2879.
Cooper, C.; and Rivera, N. 2016. The linear voting
model. In 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.
Donnelly, P.; and Welsh, D. 1983. Finite particle systems
and infection models. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 94, 167–182.
Cambridge University Press.
Grimmett, G.; Grimmett, G. R.; Stirzaker, D.; et al. 2001.
Probability and Random Processes. Oxford University
Press.
Hassin, Y.; and Peleg, D. 2001. Distributed probabilistic
polling and applications to proportionate agreement. Infor-
mation and Computation 171(2): 248–268.
Ismail, Z. H.; and Sariff, N. 2018. A survey and analysis of
cooperative multi-agent robot systems: challenges and di-
rections. In Applications of Mobile Robots. IntechOpen.
Kanade, V.; Mallmann-Trenn, F.; and Sauerwald, T. 2019.
On coalescence time in graphs: When is coalescing as fast
as meeting? In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, 956–965. SIAM.
Kohan Marzagão, D.; Murphy, J.; Young, A. P.; Gauy,
M. M.; Luck, M.; McBurney, P.; and Black, E. 2017a. Team
Persuasion. In International Workshop on Theorie and Ap-
plications of Formal Argumentation, 159–174. Springer.
Kohan Marzagão, D.; Rivera, N.; Cooper, C.; McBurney,
P.; and Steinhöfel, K. 2017b. Multi-agent flag coordination
games. In AAMAS, 1442–1450.
Li, J.; Xu, S.; Chu, Y.; and Wang, H. 2010. Distributed aver-
age consensus control in networks of agents using outdated
states. IET Control Theory & Applications 4(5): 746–758.
Lynch, N. A. 1996. Distributed algorithms. Elsevier.

Martinez, S.; Bullo, F.; Cortes, J.; and Frazzoli, E. 2005.
On synchronous robotic networks Part I: Models, tasks and
complexity notions. In Proceedings of the 44th IEEE Con-
ference on Decision and Control, 2847–2852. IEEE.
Mizrahi, T.; and Moses, Y. 2008. Continuous Consensus
with Failures and Recoveries. volume 5218, 408–422. ISBN
978-3-540-87778-3. doi:10.1007/978-3-540-87779-0 28.
Mossel, E.; Neeman, J.; and Tamuz, O. 2014. Majority dy-
namics and aggregation of information in social networks.
Autonomous Agents and Multi-Agent Systems 28(3): 408–
429.
Nakamoto, S.; et al. 2008. Bitcoin: A peer-to-peer electronic
cash system.(2008).
Nakata, T.; Imahayashi, H.; and Yamashita, M. 1999. Prob-
abilistic local majority voting for the agreement problem on
finite graphs. In International Computing and Combina-
torics Conference, 330–338. Springer.
Olfati-Saber, R.; Fax, J. A.; and Murray, R. M. 2007. Con-
sensus and cooperation in networked multi-agent systems.
Proceedings of the IEEE 95(1): 215–233.
Oliveira, R. 2012. On the coalescence time of reversible
random walks. Transactions of the American Mathematical
Society 364(4): 2109–2128.
Oliveira, R. I.; and Peres, Y. 2019. Random walks on graphs:
new bounds on hitting, meeting, coalescing and returning. In
2019 Proceedings of the Sixteenth Workshop on Analytic Al-
gorithmics and Combinatorics (ANALCO), 119–126. SIAM.
Oliveira, R. I.; et al. 2013. Mean field conditions for co-
alescing random walks. The Annals of Probability 41(5):
3420–3461.
Pasolini, G.; Dardari, D.; and Kieffer, M. 2020. Exploiting
the Agent’s Memory in Asymptotic and Finite-Time Con-
sensus Over Multi-Agent Networks. IEEE Transactions on
Signal and Information Processing over Networks 6: 479–
490.
Tsitsiklis, J.; Bertsekas, D.; and Athans, M. 1986. Dis-
tributed asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE transactions on automatic
control 31(9): 803–812.
Tsitsiklis, J. N. 1984. Problems in Decentralized Decision
Making and Computation. Ph.D. thesis, Massachusetts In-
stitute of Technology.
Yan, Z.; Jouandeau, N.; and Cherif, A. A. 2013. A survey
and analysis of multi-robot coordination. International Jour-
nal of Advanced Robotic Systems 10(12): 399.
Zhong, L.-X.; Xu, W.-J.; Chen, R.-D.; Zhong, C.-Y.; Qiu,
T.; Shi, Y.-D.; and Wang, L.-L. 2016. A generalized voter
model with time-decaying memory on a multilayer network.
Physica A: Statistical Mechanics and its Applications 458:
95–105.

