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Abstract: Increasing the diversity of bio-based polymers
is needed to address the combined problems of plastic
pollution and greenhouse gas emissions. The magnitude
of the problems necessitates rapid discovery of new
materials; however, identification of appropriate chem-
istries maybe slow using current iterative methods.
Machine learning (ML) methods could significantly
expedite new material discovery and property identifica-
tion. Here, PolyAGM, a ML algorithm using graph
kernel methods, is introduced and used to predict the
properties of block copolymers and identify the respon-
sible structural ‘motifs’. It applies a “fingerprinting”
method to convert Graph representations of polymers
into numerical vectors. The Graphs explicitly encode the
entire copolymer of atoms and bonds such that the
sequencing of chemical features and polymer chain
length are included, alongside relevant stereochemical
information. PolyAGM gives predictions for both ther-
mal and mechanical properties that are in good agree-
ment with experimental measurements. This work
focuses on predicting the properties of bio-derived
ABA-block polymer thermoplastic elastomers, but the
general fingerprinting technique of PolyAGM should be
relevant to other application fields. )
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Introduction

The development of a new polymeric material typically
takes 10-20 years.!"! Traditionally, these polymers are dis-
covered by screening large sample sets for specific proper-
ties prior to the optimization of a few candidates; the
process is effective but time-consuming.!"# While combina-
torial and high-throughput design methodologies have been
used in conjunction with computational simulations to
expedite the process, the current design strategy remains
inverted, i.e., a material’s properties are usually discovered
through enumeration rather than explicit design to elicit
those features.'”! To combat these issues and accelerate
development, researchers have turned to machine learning
(ML) and polymer informatics.'"? Although still in their
infancy, such approaches have the potential to rapidly and
efficiently explore the vast chemical, structural, and topo-
logical polymer design space and uncover relationships
between  molecular  structures and  macroscopic
properties.['4

This is crucial given the majority of currently commer-
cialized polymers are produced from fossil sources of
carbon, causing significant greenhouse gas emissions and in
need of redesign for recyclability and/or degradability.”
Therefore, methods to hasten the discovery and develop-
ment of more sustainable polymers with properties aligned
to conventional materials but better end-of-life options are
important — polymer informatics could play a role in
accelerating solutions.”! For example, recent reports de-
scribe progress in using ML tools to predict (co)polymer
thermal properties, dielectric constants, and mechanical
properties.***l Polymer Genome, for instance, predicts
various properties from polymer repeat units represented as
SMILES strings.l**<! Notably, this is one of the few examples
that predict mechanical performances, which is crucial for
subsequent applications.”*! Several algorithms report prop-
erty predictions from structure, though only a small number
can identify structures to meet desired specifications.”! In
one example, Mannodi-Kanakkithodi et al. used a genetic
algorithm inspired by natural selection processes to identify
novel materials with specific band gaps.*! More recently,
Kuenneth etal. used a multitask deep neural network
algorithm to identify new polyhydroxyalkanoates as alter-
natives to current commodity plastics.'” Lastly, Batra et al.
used variational autoencoders to generate polymer candi-
dates for tolerance under extreme temperatures."!! Despite
these advances, the representation of more complex poly-
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mer structures still poses a challenge as can the availability
of sufficient datasets for training ML algorithms.[*'?

While the details of these algorithms vary, most polymer
informatics development follows a series of distinct steps.
First, a database of materials and properties is acquired via
experimentation, literature curation, or from existing online
databases.I"! Next, each material is encoded as a numerical
vector in a process called “fingerprinting”.***! Fingerprint-
ing transforms polymer structures into numerical vectors
with fixed dimensions and typically captures features across
the atomic, molecular (i.e., functional groups) and morpho-
logical length scales.”*! In addition to chemical structures
or fragments of those structures, fingerprints can also
include features such as van der Waals interactions, fraction
of rotatable bonds and atoms bonded within cyclic struc-
tures, shortest topological distance between rings, and length
of side chains, etc.” Selection and inclusion of the necessary
features typically require specialist knowledge of particular
chemical characteristics at each length scale and pre-
determination of their significance in the construction of
feature vectors.’®! Regardless of the method of fingerprint
selection, these features are used together with the associ-
ated material properties to train the algorithm to identify
significant features and relationships, which are then utilized
to make predictions, allowing optimization of a specific
property. Fingerprinting methods for copolymers have been
extensively compared by Patel et al., showing how different
input methods (one-hot encoding, molecular, and descriptor
vectors) affect property predictions.!" In this work, we aim
to add to the fingerprinting set of strategies by connecting it
to the field of graph kernel methods.

Here, polymer informatics is applied to predict the
properties of block polyester and -carbonate thermoplastic
elastomers (TPEs). TPEs represent an important subset of
plastics, with a forecast global market production of 5.6 Mt
by 2026.") They are widely used in transportation, consumer
goods, electronics, robotics, healthcare and construction.*!6!
Typically, TPEs have ABA triblock polymer structures,
where A =‘hard’ polymer block with a thermal transition
above the operating temperature and B=‘soft’ polymer
block with a thermal transition below room temperature.
Microphase separation into A and B domains leads to
physically crosslinked materials and hence contributes to
mechanical performance. Usually, a minority A-block
arranged in spheres or cylinders within a soft B-block phase
is associated with elastomeric behavior."” As the materials
are not covalently cross-linked, product recycling by thermal
re-processing is feasible, unlike crosslinked rubbers.!*!*!
Nonetheless, chemical recycling or polymer degradation is
still necessary after a certain number of thermal reprocess-
ing cycles. Both are currently challenging with commercial
TPEs, which are mostly comprised of hydrocarbon blocks,
like polystyrene and -isoprene/-butadiene blocks that are
not degradable.’>'*) To tackle these challenges, attention
has turned to polyester and/or carbonate block polymers
since these linkage chemistries facilitate polymer backbone
degradation e.g. via transesterification or catalyzed/enzy-
matic hydrolyses.'” Pioneering research by Hillmyer and
colleagues has resulted in the development of more sustain-
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able TPEs comprising ABA block polyesters, which are
prepared using sequential cyclic ester ring-opening polymer-
ization (ROP).['*?"l Besides thermal reprocessing as an end-
of-life option, these TPEs are also hydrolytically degradable
due to the ester moieties, and in many cases, the monomers
are bio-derived.P*?!!

Since the first publications, numerous studies have built
on this by introducing other polymer chemistries and new
bio-based monomers, broadening the accessible material
properties and performances. Recently, new types of poly-
ester/carbonate block polymer TPEs were prepared using
epoxide ring-opening copolymerization (ROCOP) with
anhydrides (polyesters) or CO, (polycarbonates).’? Using
catalysts able to switch between heterocycle ROP and
epoxide/heteroallene ROCOP allows for the production of
many new types of TPEs incorporating lactones, epoxides,
anhydrides, CO,, or cyclic carbonates into a variety of
structures and block configurations. In addition to the wide
range of monomer combinations, the use of controlled
polymerizations to make the TPEs allows for precise tuning
of the degree of polymerization (DP) and composition, both
of which influence material properties.’**! Indeed, the use
of controlled ROP and ROCOP techniques to generate
sequence-defined block compositions with narrow molar
mass distributions makes them particularly attractive for
encoding into ML algorithms.”* As things currently stand,
the synthesis and characterization of all possible block
polymers may take lifetimes to complete. Without interven-
tion, it is possible that only a small fraction of possible
structures will ever be explored.

This paper introduces Polymer Property Prediction
based on the Automatic Generation of Motifs or PolyAGM
(Figure 1). Unlike other methods that represent repeating
units,”! or chemical fragments extracted from polymers,*”
PolyAGM encodes the entire copolymer length as a graph.
In computer science, graphs are used to represent con-
nections and spatial relationships between objects and
consist of “nodes” and “edges”. In PolyAGM, entire
polymer chains are described by graphs, with atoms encoded
as nodes and the bonds between them as edges. This method
is applied to block polyester and carbonate TPEs, where
each polymer in the dataset has a well-defined block
composition and DP. BigSMILES strings are used to trans-
form each high-DP polymer into graphs with hundreds or
thousands of nodes, each representing an atom and explicitly
encoding how the repeat units are joined. The importance of
such explicit accounting for the sequence of chemical
features has been highlighted by, for example, Patel et al."¥
Graph kernel methods are then used to automatically
extract motifs or fingerprints from graph inputs to form
feature vectors that are used to predict polymer thermal and
mechanical properties. PolyAGM captures both local struc-
tures and patterns, as well as global ones, and allows for the
encoding of polymer stereochemistry, which is relevant to
prevalent bio-derived poly(lactide) chemistry, amongst
others.?™" For both the method and some evidence of the
impact of succesful capturing of stereochemistry, see
Supporting Information Figure S11 and S12.
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Figure 1. Outline of PolyAGM. Each ABA-block polymer is expressed
using BigSMILES strings (shown for poly(lactide-b-6meCL-b-lactide)
with 20 wt % lactide A-block and overall DP 931; see Figure S9 for
BigSMILES stereo-chemistry descriptors). The entire structure is then
transformed into a graph, where nodes =atoms and edges =bonds, as
well as incorporating features such as stereochemistry in node labels.
PolyAGM automatically extracts motifs to yield a feature vector.
Training on experimental data allows property predictions and
identification of the motifs relevant to each.

Results and Discussion

Block polymer TPEs are ABA-copolymers that have a
phase-separated structure (Figures 2 and 3).1*"! The A-block
has a high glass transition temperature (7,) and is consid-
ered “hard,” while the B-block has a low T, and is
considered “soft.” As a result, these materials have two
distinct glass transitions with the temperature range between
them representing the materials’ application window.!'™"
This paper focuses on developing more sustainable TPEs
made from cyclic ester/carbonate ring-opening polymer-
ization (ROP) or epoxide/heteroallene ring-opening copoly-
merization (ROCOP) with monomers like lactones, epox-
ides, anhydrides, cyclic carbonates, and carbon
dioxide,[10°20202200270028] These monomers are copolymerized
in different block and chain sequences to create oxygenated
polymers that degrade through their backbone ester and/or
carbonate linkages (Figure 2A).

While recent years have witnessed significant progress in
the production of such materials, it is still challenging to
produce a sizable database for ML using existing literature-
sourced datasets. To broaden the structural types and data
set, additional block copolymers were thus synthesized
(Figure 2B with new monomers/polymers highlighted in
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red). These new copolymers were synthesized via bio-based
lactone ROP followed by epoxide/anhydride ROCOP (see
Supporting Information for experimental details and bio-
based monomer sourcing). In some cases, carboxylic acid
functional groups were introduced into the hard A-blocks
after polymerization using thiol-ene chemistry.?**! In
separate work, it was shown that the introduction of
carboxylic acid functionalities is a highly effective strategy to
significantly moderate both the upper glass transition
temperature (A-block, T, ) and the materials’ stress-at-
break (brear) compared with unfunctionalized
analogues.”®?! Hence, it was a relevant design strategy to
include.

To create the database, each block polymer was ex-
pressed in line notation using BigSMILES strings, which
were converted into graphs using standard Python libraries
(RDkit and PySMILES).®" The copolymer thermal and
mechanical data, including glass transition temperatures (7,
T, upper), Stress-at-break (oy) and strain-at-break
(evreax), together with associated error ranges (where these
were reported), from literature sources or experimental
measurements were added to the database (see data
availability).[16b’2()a‘b‘22“’23’27h’28’31]

As microphase separation is a prerequisite for TPE
performance, all the block polymers in the dataset showed
phase-separated structures. Experimentally, phase separa-
tion is often established by examination of thermal tran-
sitions (compared against homopolymers) and, in many
cases, using small-angle X-ray scattering (SAXS) experi-
ments (e.g. representative data for these polymers in Fig-
ure 3). For each sample, the propensity for phase separation
and precise morphology adopted would be determined by
the incompatibility of the blocks (expressed as the Flory-
Huggins interaction parameter, y), the overall DP and the
fraction of A-block content. Although X is not used by
PolyAGM, all the block polymers in the database feature
phase-separated block polymers featuring A: B block ratios
and overall DPs such that they behave experimentally as
elastomers (determined by tensile mechanical measure-
ments). For broader information, the database indicates the
particular phase morphology and associated domain spac-
ings, together with y, for specific polymers and where these
were available (Table S2). Most polymers were fully amor-
phous, so only the lower (B-block) and upper (A-block) T,
values were recorded. A proportion of polymers (~25 %)
were semicrystalline, and in these cases, crystallisation (7.)
and melting (7,,) temperatures were also incorporated in
the database. It is important to note, however, that the
PolyAGM method does not require any descriptors beyond
the molecular length scale or knowledge of the established
theories which govern different length-scale behaviours in
order to correlate machine-predicted thermal-mechanical
properties with experimental measurements.

Compared to some prior polymer informatics ap-
proaches, the resulting dataset composed of 91 different
block polymer TPEs is rather small. The small dataset is a
consequence of the field size. However, there is literature
precedence for ML algorithms to successfully predict out-
comes using similarly sized datasets for related tasks.* We
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Figure 2. Examples of thermoplastic elastomers in the PolyAGM database. A) Scheme illustrating potential monomer combinations to produce
polyester/carbonate ABA block polymers. B) Soft (B-block) and hard (A-block) monomers that are included in the database; in many cases, the
monomers are bio-derived. The new monomers and ABA block polymers are labelled in red (Figure S1-S8 and Supporting Information for
synthesis and characterisation details). A key to abbreviations and monomer bio-sourcing can be found in Table S1.

also elected to create a database in preference to commer-
cial/open-source databases since the latter typically focus on
today’s materials, which are predominantly restricted to
hydrocarbon polymer backbones. Consequently, the consid-
eration of heteroatom-rich bio-based polymer classes is
reportedly beyond the scope of some ML studies.” This
work specifically sets out to try to accelerate structural
identification for polymers featuring degradable ester/
carbonate backbones, i.e. oxygenated polymers, and as far
as possible, using bio-derived monomers. As such, learning
from hydrocarbon polymers may be counterproductive.

In PolyAGM, graph kernel methods are used to infer
property predictions.® These algorithms are combined with
probabilistic regression models to predict values for the
polymers’ thermal and mechanical properties, i.€. Ty oers T
upper, Obreaks ANd 4,00 Graph kernel methods compare graphs
by learning similarities or differences between given struc-
tures. For this series of block polymers, similar graphs might
be expected to yield similar polymer properties. To compare
the different TPEs, the graph kernel methods identify the
frequency of occurrence of various structurally different
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motifs - recurring patterns or groups of atoms in the polymer
structure (Figure 3). Unlike other ML investigations of
polymers, PolyAGM does not necessitate that the user pre-
defines these motifs."™ Instead, it explores families of all
patterns given by rules based on graph kernel methods. It
then identifies which patterns are most significant, with
those that are insignificant being automatically discarded.
Here, we show results for when the ‘Weisfeiler-Lehman’
(WL) graph kernel algorithm is used.™ The WL algorithm
examines the substructure surrounding a central atom at a
distance k from it. For example, in Figure 3, a motif
retrieved for k=2 for the atom circled in red is illustrated.
For each graph, a feature vector is produced such that each
dimension (i.e., position in the vector) represents a motif
and its frequency of occurrence in the graph gives the value
associated with that dimension. The greater the distance &
selected, the more motifs there are. In our dataset, the total
number of different motifs (dimensions of the feature
vectors) for k=1, 2, 3, 4, and 5 are 31, 115, 234, 386, and
549, respectively. Of course, not all motifs appear in all
polymers, and where motifs are absent, the value associated
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Figure 3. Polymer length scales relevant to conventional understanding of factors influencing thermal-mechanical properties. Polymer science
typically applies knowledge of larger length scales (above molecular) to understand macroscopic thermal and mechanical properties. Theories to
understand block polymer microphase separation are dominated by the Flory Huggins Interaction Parameter (x), the volume normalized overall
degree of polymerization (N) and A-block volume fraction (f,). The block polymer phase separated morphology is often confirmed by SAXS
experiments. In the diagram, ‘green’ represents the ‘soft’ B-block and ‘blue’ the ‘hard’ A-block polymer. In this work: PolyAGM only applies
descriptors relevant to the molecular length scale (i.e. the sequence of monomers and the relative block compositions). It does not apply
information on the specific phase-separated morphology or X and nor does it require the user to define the motifs.

with that motif is zero. After creating feature vectors for all
the polymers in the dataset, the values are scaled such that
the number of occurrences of each motif is represented
within a more manageable range, typically between 0 and 1.
For a given polymer and motif, the standardized value is
defined by dividing the number of occurrences of a given
motif in each polymer by the maximum number of times
that motif occurs in all polymers in the dataset. This is
standard practice and not negatively affected by the later
discovery of additional datasets with even larger numbers of
motifs — they simply take a value greater than one. The
model allows for both the use of all motifs up to a given
distance and the use of motifs at a fixed distance. Finally,
any machine learning method that takes feature vectors as
inputs can be used. Here, we show results using probabilistic
methods, such as Bayesian regression, which is used to learn
from the feature vectors and RFE (Recursive Feature
Elimination) was employed to discard features which are
less significant, i.e., their values have a negligible effect on
predictions. Due to the smaller dataset size, a “leave-one-
out cross-validation“ was used. Each data point was
evaluated after training the model with all but that one
point, allowing for property predictions for all samples. The
quality of the obtained predictions was assessed by RMSE
and R* values. RMSE is the square root of the average of all
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squared errors. The R* value is reported as a measure of
how much of the variance of the predicted variables is
captured by the input variables.

Property Prediction

Several ML investigations have successfully predicted the
thermal transitions of homopolymers and copolymers.[*4!
However, there are not yet reports of these approaches
being applied to phase-separated block polymers containing
multiple thermal transitions. The PolyAGM predicted vs
experimentally measured thermal transitions for the differ-
ent TPE blocks, T, ., and T ., were compared in parity
plots and show close agreement with R® values >0.95
(Figures 4A—B). The color of each data point represents the
monomer combination used to construct the polymer and
excellent fits result for all the different monomer combina-
tions in the database. Note that, experimentally, the thermal
transitions can be measured using a range of techniques, and
T, values can shift depending on the specific technique and
conditions used to measure them. Techniques include differ-
ential scanning calorimetry (DSC), dynamic mechanical
analysis (DMA), or oscillatory rheology, all of which show
the full transition over a range of temperatures. Values in
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Figure 4. Performance of PolyAGM. Parity plots showing experimental vs predicted values of A) T, ... and B) Ty o C) Exemplar DSC trace of
poly(PA/CHO-b-4meCL-b-PA/CHO) showing the experimental upper and lower T, values that are characteristic of phase-separated structures.
Parity plots showing experimental vs predicted values (of unseen data) of D) Elongation-at-break, &, and E) Stress-at-break, 0y.,. F) Exemplar
stress-strain data showing experimental measurement of €, and Oy, for poly(PA/CHO-b-4meCL-b-PA/CHO). All plots correspond to WL-3 with
shortest paths and all predictions are of test data. For the molecular structure of each repeat unit (L-lactide, etc) please refer to Figure 2 and

Table S1. The dotted lines are parity lines. Inset: Performance of PolyAGM in correlating property trends illustrated through poly(PA/CHO-b-eDL-b-
PA/CHO) datasets? in A) T, .. with overall polymer DP (as labelled) and inset D) &, with varying A- to B-block lengths but same overall DP
(see also Figures S9-10).

the dataset were almost invariably recorded by DSC, where  standard conditions of heating rate and removal of thermal
the T, was determined as the midpoint value measured using  history. Owing to the well-defined, narrow dispersity of the
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polymers, typical experimental errors spanned a few de-
grees. The low RMSE values observed for both the lower
and upper T, predictions are consistent with this experimen-
tal error and in line with values reported using ML to
predict the properties of other polymer types.[**<¢™ A
detailed comparison of PolyAGM with Morgan Finger-
printing, showing the improved results obtained with
PolyAGM, is provided in the Supporting Information
(Section on Morgan Fingerprints, Table S5-S8 and Figur-
es S14-16).

PolyAGM was also successfully used to predict TPE
mechanical properties and parity plots for the predicted and
reported values of oy, and &, also showed good agree-
ments (Figures 4D—E). Experimentally, there are signifi-
cantly greater errors associated with these types of mechan-
ical measurements and the only consistently reported source
is a normal variation between samples (standard deviation).
The data used in this study included experimental and
literature values reported for films fabricated by both
solvent casting and thermal pressing, which were measured
using uniaxial tensile testing apparatus. Both character-
ization and fabrication techniques cause variations in the
experimental data that cannot be addressed in the algorithm
(see limitations and future outlook section). Additionally,
other considerations not consistently reported in the liter-
ature, including the experimental temperature, humidity and
any pre-treatments/storage, may also impact experimental
results. With these limitations in mind, the prediction of
Oprear 1S Very effective in capturing the overall trends in the
data as well as for specific families of monomers (Figure 4
inset). In particular, the predicted values alongside those for
enrear f€ll Within experimental error, which was of the order
of £1.2 MPa for 6., and £56 % for &, The prediction vs
experimental data for e, showed a better fit, with R* of
0.94, indicating that the algorithm successfully captures these
mechanical properties. Since the measurement of ¢, also
has the largest numerical span of values, higher RMSE
values are expected.

The polymers examined in this work were all synthesized
using controlled polymerization methods and so feature
narrow dispersity and predictable DPs and block ratios.
While PolyAGM may not be best suited to address any
differences in DP distributions, the accuracy of the predic-
tions shows the importance of capturing the full DP. To
illustrate this point, polymers with identical monomer
compositions but varying block or overall DP have different
predicted properties, and these are consistent with the
experimentally observed and theoretically rationalized/ex-
pected trends. For example, PolyAGM correctly matches
the experimental trend of increasing T, .., Observed for a
series of block polymers comprised of a similar composi-
tional ratio of PA, CHO and eDL monomers but increasing
overall DP (Inset Figure 4A).”* Similarly, when the overall
DP of ABA polymers made from this monomer set are kept
constant, changes in &, With A:B block length ratio are
also correctly captured in the predictions (Figure S9). These
experimental trends are attributed to an increase in chain
entanglements in the hard block with DP, resulting in high
stresses before mechanical failure.’™ Similar contextualiza-
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tion of the trends in experimental vs predicted results can be
made for ey, values (Figure4D) and other exemplar
monomer series in the dataset (Figure S10). Identifying
these trends reassures that the PolyAGM approach is
suitable.

The dataset contains TPE materials that are strongly
influenced by stereochemistry. Poly(lactide), derived from
corn starch, can form isotactic A-blocks when prepared
from L-lactide monomer or predominantly atactic stereo-
chemistry when racemic mixtures of D- and L-lactide are
employed (Figure 4).11¢v2020]

One benefit of representing polymers as graphs is the
capability to consider this influence. This is achieved by
adding a label to nodes (atoms) that are identified as
stereocenters (Figure S11). For example, polymers with
equivalent B-block chemistry, poly(4meCL), but only a
single L-lactide stereochemistry in the A-block yield TPEs
with 25 % higher oy, than those consisting of mixtures of
lactide stereochemistry (Figure S12). This difference arises
from crystallization in the poly(L-lactide) blocks acting to
reinforce the hard blocks and requiring high stresses to
break. When a mixture of stereocenters is present in
poly(rac-lactide),  this  crystallization  behavior is
prevented.”™ Hence, encoding stereochemical information
is essential to ensure accurate results,[!620a}200-2026-27.280] Tpy
the past, ML in polymer chemistry has struggled to define
stereochemistry or tacticity, and often, these high-level
features are ignored.[*

Motif Analysis

ML is a valuable tool for structure-property optimization
and so far guided experimental work and has tended to
focus on the prediction of homopolymer thermal transitions,
dielectric constants, band gaps, and gas permeability; in all
these cases, the monomer chemistry (i.e. repeat unit
structure) primarily influences the properties.” That is to
say, the fingerprinting techniques employed typically do not
consider the higher-order descriptors of stereochemistry and
DP.?**1 These descriptors were important for the TPE
property predictions above, and further structure-property
explanations can be provided based on the motif analysis. In
PolyAGM, motifs are automatically generated without addi-
tional user input from graphs that consider both the
chemical structures of polymer repeating units, stereochem-
istry and DP. In this way, PolyAGM motifs are not the same
as repeat unit structures. They allow contributions from
pendant functionalities and chain ends to be isolated from
the backbone chemistry, and they capture patterns related
to junctions between A- and B-blocks and neighbouring
monomers in random copolymer blocks. A worked example
is provided below (Figure 5).

It is important to note that PolyAGM encodes only
molecular information and does not rely on knowledge of
complex morphological behaviours.”” As a worked example
then, it was interesting to consider block polymer TPE
structures where non-covalent interactions were also at play.
In this regard, the block polymers featuring carboxylic acid
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Figure 5. Motif generation and analysis. A) Illustration of how ‘motifs’ are generated in PolyAGM at different distances (excluding hydrogens) from
the central atom (outlined in red). Double bonds are highlighted in orange. B) Proof of concept of the motif analysis conducted by PolyAGM using
the triblock polymer featuring carboxylic acid functionalities in the ester hard blocks. The motifs are all generated at k=2, and the central atom is

indicated by a red dot. The influences on T, .,

and Oy, predictions are illustrated with green upward arrows representing an increase in value,

red downward arrows representing a decrease in value, and black dashes representing a negligible effect. The set of motifs corresponding to the

PTMC block and the carboxylic acid functionality are highlighted in purple.

substituents are significant since these functional groups are
known to undergo hydrogen-bonding interactions, which
moderate mechanical properties.*

A carboxylic acid functionalized poly(ester-b-carbonate-
b-ester) was selected for the motif analysis since it contains
such non-covalent interchain features that contribute to its
material properties (Figure 5B,, see also Supporting Infor-
mation section Motif Analysis Figure S13, Table S3-S4)."!
Furthermore, it was established in earlier experimental work
that the poly(trimethylene carbonate), P(TMC), midblock
undergoes strain-induced crystallization (SIC) at high strain,
resulting in an increased o, compared to other TPEs in
the dataset (which are not reported to undergo SIC in this
B-block).?! This alignment of chains, resulting in crystal-
lization, only occurs above a sufficiently high DP, and
neither this behaviour nor the H-bonding between carbox-
ylic acid substituents in the outer polyester hard phases is
directly encoded by PolyAGM. Thus, the material was

Angew. Chem. Int. Ed. 2025, 64, €202411097 (8 of 12)

investigated further to understand which motifs were most
influential. The polymer structures are well-defined, so the
carboxylic acid functional groups are attached to every ring-
opened epoxide in the polyester hard blocks. It was revealed
experimentally that the installation of the carboxylic acids
results in a slight reduction to T}, and an increase to oy,
compared to the same polymer before functionalization.”*’
The T, ., reduction occurs because the reaction to install
the carboxylic acid also introduces a short alkyl chain, which
increases segmental motion. Since the carboxylic acid is only
present in the polyester hard blocks, its addition has a
negligible impact on the T, ., The increase in g, arises
from H-bonding between chains, reducing mechanical fail-
ure by chain pull-out from the hard blocks compared to the
unfunctionalized counterpart.?***

The important motifs were determined in terms of both
the influence on T, ., and o, (Figure 5B). The relative
significance of each motif was determined using LIME,"*!
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which assesses a motif’s impact by comparing how the
prediction changes when that motif is absent.”™ Such
algorithms are also referred to as ‘explainers’, given their
power to capture how a particular motif affects a given
prediction. The magnitude of the increase or decrease in a
property cannot be accurately attributed to a specific motif;
rather, motifs are identified as contributing to a change in
properties, which allows for a qualitative analysis of how
different atomic structures influence material properties.
Naturally, whether the predicted value increases or de-
creases depends on how the algorithm was trained, which
reflects the information available in the dataset. For
example, the dataset used in this work provides the ML with
comparative polymers with and without carboxylic acid
functionality. Therefore, when a motif from the pendant
carboxylic acid chain is removed from the polymer, the
prediction of the T, value should increase and its 6,4
value decrease.

The motif analysis correctly identified the correlation
between (hetero)cyclic structures in the polymer hard blocks
and higher values for the 7, . (Figure 5B). This finding is
consistent with long-standing polymer theory since hetero-
cyclic structures reduce the chain’s rotational freedom. The
analysis also correctly identified motifs corresponding to the
carboxylic acid as responsible for reduction to the T, yyper
and increasing the o,,.,. Nonetheless, PolyAGM incorrectly
proposed several sulfur-containing motifs as contributing to
the increased o, This likely arises because of the thiol-
ene reaction used to install the carboxylic acid substituents,
which means that sulfur substituents always accompany
carboxylic acids. Since every acid-functionalized polymer in
the training set was prepared using thiol-ene reactions,
PolyAGM has no way of separating or interpreting different
effects from the substituents. This limitation could be
resolved with additional training, either by using a data set
containing other functional groups added via thiol-ene
reactions or by adding carboxylic acid groups to the polymer
backbone by other synthetic methods (oxidations or protect-
ing group chemistry using functionalized monomers). The
motif analysis also correctly identified motifs within the
PTMC block as contributing to the increased oy, Which is
consistent with the experimentally observed SIC.”?*! Impor-
tantly, it correctly identified that PTMC motifs were not

contributing to the decreased T, ., value.

upper

Polymer and PolyAGM Compatisons

The motivation behind this work was to accelerate the
development of bio-derived, recyclable and degradable
alternatives to commodity plastics. By comparing the
predicted TPE o;,., and ¢, values to specifications for
commercial elastomers, it was observed that many of these
property spaces can be matched (Figure 6). For example,
styrenic block copolymers (SBS, SIS and SEBS) are the
largest TPE market by volume. Block copolymers composed
of polymenthide and polylactide derived from cumin/thyme
and corn starch, respectively, match the requirements of
SBS. Those based on decalactone (¢DL), phthalic anhydride
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Figure 6. Ashby Plot of Gpyes VS Epreax fOr commercial elastomers and
PolyAGM predicted TPE properties. Commercial elastomer property
spaces encompass multiple data points based on literature and
commercial datasheets. Polymers synthesised as part of this work are
marked in red in Figure 2 above, where the chemical structure of
repeating units can also be found. Styrenic block copolymers are
poly(styrene-b-butadiene-b-styrene) (SBS), poly(styrene-b-isoprene-b-
styrene) (SIS) and poly(styrene-b-ethylene-butylene-b-styrene) (SEBS);
TPO =Thermoplastic Polyolefins; TPV =Thermoplastic Vulcanisates;
MPR = Melt Processable Rubber; PEBA =Thermoplastic Polyether
Block Amides; COPE =Thermoplastic Copolyesters; TPU=Thermo-
plastic Polyurethanes.

(PA) and cyclohexene oxide (CHO) derivable from castor
oil, corn stover and triglycerides fall within the space for SIS
elastomers. Although this could be identified from the
experimental data, PolyAGM motif analysis allows the
relevant chemical features important to these property
spaces to be considered. For example, polystyrene and
phthalic anhydride-derived polyesters impart aromatic ring
structures to the polymer backbone, and alongside polylac-
tide, they all exhibit high 7, values. Compared to styrenics,
these copolyesters can be degraded and/or chemically
recycled. Though obvious to the trained polymer scientist,
the automatic generation of and learning from these motifs,
without expert input knowledge, forms the basis of the
potential for non-specialists to accelerate the discovery of
structure-property correlations and materials development.
To evaluate PolyAGM's potential compared to other
ML methods, we compared it with Morgan Fingerprints and,
specifically, the model described by Rogers and Hahn and
implemented by RDKit.’® We apply the same ML algo-
rithms (identical parameters) to feature vectors derived by
both approaches. One might also consider Graph Neural
Networks.”” Although Neural Networks normally require
significantly more data, there have been advances in
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techniques for datasets of around hundreds of data points.”"
Most crucially, however, PolyAGM allows a more straight-
forward motif analysis using explainability methods than
Graph Neural Networks. The consequence is that PolyAGM
produces results that can be scrutinised without prior
chemical and material understanding of TPEs. This is
important considering the still limited data on bio-derived,
recyclable, and degradable polymers and the need to act
quickly to address the plastic waste problem.

Experimentally, polymer chain length (DP) is essential
to understanding block polymer thermal and mechanical
properties and must be accounted for in any machine-
learning method. Indeed, Patel et al." recently reviewed a
range of polymer ML methods and emphasised the
importance of developing methods to accurately encode for
polymer DP, particularly for more complex structures, such
as block polymers where it is also essential to ensure the
correct monomer ratios. One detraction for Morgan Finger-
prints is that they ignore polymer descriptors such as
stereochemistry and DP. Whilst Tao et al.’*! were able to
predict high and low T, values from chemical structures
using Morgan Fingerprints; this was only for homopolymers.
Overall, then PolyAGM addresses challenges such as
accounting for polymer DP, being applicable to copolymers
with variable block fractions, including stereochemical
descriptors, and automated fingerprint generation. As men-
tioned, most current polymer informatics is restricted to
homopolymers, and prior efforts using copolymers have
struggled to account for their complexity.

Another challenge is the creation of universal predic-
tions and ML tools capable of operating across multiple
classes of materials. Feature vectors typically include
descriptors across the length scales relevant to a specific
property. Thus, these features must be modified if a differ-
ent property is investigated, limiting universal
applicability." PolyAGM allows any polymer or copolymer
to be represented as long as it features a set of chemical
repeat unit structures and has a defined DP. Hence, it
should be applicable to more complex architectures, such as
stars, branched, or brush polymers, that are also known to
significantly impact mechanical properties. Importantly,
PolyAGM obviates the need for specialist chemical knowl-
edge input about these architectures to predict properties
and allows predictions free from user restriction or bias.

While more work is necessary to convert PolyAGM into
a user-based platform, the simple methodology, accurate
predictions, and significant facility to adapt it to other
structures or properties appear significant. For comparison,
better TPE property predictions were obtained using
PolyAGM than using the same dataset with a method
derived from the original Morgan Fingerprints (see SI).”" In
this investigation, the WL graph kernel framework was
applied, but in the future, PolyAGM can work using other
graph kernel methods. An interesting avenue will be to
develop a comprehensive analysis of how such methods can
be combined (e.g. ensemble methods) and identify how best
to compare method performances. For example, there were
improved results by including alternative graph kernel
methods in the prediction of g;,.q, suggesting that combining
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different kernel methods may lead to improved results (for a
more detailed discussion, see Methods).

Limitations and Future Outlook

Focused on the development of ML tools to aid sustainable
TPE discovery, a focused dataset comprising exclusively
phase-separated triblock polyesters and polycarbonates
(ABA-type), prioritizing bio-derived monomer enchain-
ment, was constructed from existing literature and new
experimental data. Despite the limited data size, PolyAGM
was able to generate accurate predictions of thermal and
mechanical properties and is expected to be more broadly
applicable to other classes of oxygenated polymers. How-
ever, more experimental data would improve the scope and
range of its predictions. We note that there are some
systematic sources of error because PolyAGM does not
account for the dispersity of the samples which impacts the
precision in presentation of DP values. However, the use of
our curated database is important since the samples
dispersity values are generally narrow, indeed the average
dispersity is 1.31 across the 91 samples. Although PolyAGM
is successful in accounting for the stereochemistry in each
repeat unit (where relevant) and this feature does impact
the thermal and mechanical properties for those polymers,
we cannot guarantee that the experimental methods used to
make isotactic polymer blocks occurred without any epime-
rization. In particular, further development of PolyAGM
would aim to generate new bio-based copolymer candidates
for targeted properties (forward predictions), possibly aided
by robotics automation."*! Future investigations using
PolyAGM will target more complex questions relating to
the structures and properties of block polymers, e.g.
predicting DPs and block ratios required for phase-separa-
tion, which phase-separated morphologies should be ac-
cessed for different block polymer compositions or predict-
ing y for new block polymer structures. Sequence
distribution of copolymers is also of key importance and
should be further explored with these chemistries."*?*»!1 A
particular challenge apparent from the outset in predicting
TPE tensile mechanical properties and, mentioned earlier,
are the influences of different sample processing, character-
ization and pre-treatment protocols. For example, in proc-
essing the polymers into samples for mechanical testing, a
range of methods, including solvent-cast films or hot-pressed
(compression molded) films, were applied. In character-
ization, either DMA or tensiometer methods were used,
following ISO protocols, but with variable numbers of
repeat experiments, strain rates and somewhat subjective
reporting of stress and strain-at-break. PolyAGM does not
explicitly account for these factors; one consequence is that
the experimental mechanical properties typically show larger
errors than the thermal transitions.

The future expansion of PolyAGM and similar algo-
rithms will heavily rely on community engagement and
robust, consistent data reporting. For this reason, the data-
base used in this study is openly available on GitHub for
others to expand and add to.*! We envisage the current
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database as a basis for future investigations to add to and
feed into developing ML algorithms. Sustainability is a
priority for plastics, and it may be decades before a
sufficient volume of data is experimentally generated. Thus,
working with the available data allows for the acceleration
of research in this area. The data addition and curation
allow for the deposition of results that may not exhibit
desired properties and thus may never be published. It also
provides a route to input new materials and properties
where online databases are not currently available. Many
new polymers are not featured in such repositories, and we
do not have time to wait for bio-sourced polymer databases
to be generated on a comparable scale. Therefore, others
are invited to populate, use, and improve the database
provided in this work.

Conclusion

A new property predictive machine learning tool, Poly-
AGM, an algorithm that predicts properties based only on
molecular-level motifs generated by representing polymers
as graphs and applying graph kernel methods, is reported. It
was applied to predict the thermal and mechanical proper-
ties of ABA block polymer thermoplastic elastomers
featuring -ester and/or -carbonate linkages. Where possible,
the monomers used were selected to have viable bio-based
routes to production. The polymers all feature physically
cross-linked structures, making them more amenable to
recycling through reprocessing and, through the ester/
carbonate linkages, to chemical/bio-chemical degradations.
PolyAGM showed a strong ability to predict glass transition
thermal properties, namely the T, ypper and Ty joue Of the
respective blocks in block copolymers, as well as tensile
mechanical properties like strain and stress-at-break. It was
also used to identify ‘key’ chemical features correlating with
changes to the thermal and mechanical properties. Poly-
AGM is openly available and designed to be easily modified
in future to examine other bio-derived, degradable polymers
and to test for new properties.

Supporting Information

Experimental details and characterization of new polymers
synthesized in this work are provided in the SI. The
database used in this study is available directly from https://
github.com/davidkmarzagao/polyAGM/blob/main/database.
xlsx. All Python code (including the database) required to
replicate the research is also available on GitHub: https://
github.com/davidkmarzagao/polyAGM.
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