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Provenance Graph Kernel
David Kohan Marzagão, Trung Dong Huynh, Ayah Helal, Sean Baccas, Luc Moreau

Abstract—Provenance is a standardised record that describes how entities, activities, and agents have influenced a piece of data; it is
commonly represented as graphs with relevant labels on both their nodes and edges. With the growing adoption of provenance in a
wide range of application domains, users are increasingly confronted with an abundance of graph data, which may prove challenging to
process. Graph kernels, on the other hand, have been successfully used to efficiently analyse graphs. In this paper, we introduce a
novel graph kernel called provenance kernel, which is inspired by and tailored for provenance data. We employ provenance kernels to
classify provenance graphs from three application domains. Our evaluation shows that they perform well in terms of classification
accuracy and yield competitive results when compared against existing graph kernel methods and the provenance network analytics
method while more efficient in computing time. Moreover, the provenance types used by provenance kernels are a symbolic
representation of a tree pattern which can, in turn, be described using the domain-agnostic vocabulary of provenance. Therefore,
provenance types thus allow for the creation of explanations of predictive models built on them.

Index Terms—kernel methods, data provenance, graph classification, provenance analytics, interpretable machine learning

✦

1 INTRODUCTION

P ROVENANCE is metadata that provides an account of
the actions a system performs, describing the appli-

cation data involved, the flow of such data, the processes
carried out over the data, and the people and organisations
involved in it. Provenance is increasingly being captured
in a variety of application domains, from scientific work-
flows [1], [2] supporting their reproducibility, to climate
science [3], and human-agent teams in disaster response [4].
A data model for Provenance was standardized at the World
Wide Web Consortium (W3C), which defined provenance
as a record that describes the people, institutions, entities, and
activities involved in producing, influencing, or delivering a piece
of data or a thing in the world [5]. Structurally, provenance
metadata is a form of knowledge graph [6], that provides an
enrichment of application data allowing a wide range of use
cases to be supported, including deciding whether the in-
formation is to be trusted, how it should be integrated with
other diverse information sources, and how to give credit to
its originators when it is reused [7]. Provenance metadata
is deeply connected to the flow of time, as specified by
its temporal interpretation [8]; to be valid, provenance is
expected to satisfy some temporal constraints [9]. The dis-
tinct nature of application data and provenance metadata
should be noted; they are complementary as provenance
metadata does not seek to replicate application data, and
they support different requirements, and sometimes even
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require distinct security measures [10]. As the desire to
ascertain the authenticity of data surges, a greater number
of applications are being “provenance-enabled”, resulting
in users being confronted with an increasing volume of
provenance metadata, especially from automated systems.
The volume of provenance metadata makes it a challenge to
extract meaning and significance.

The focus of this paper is on the study of techniques to
make sense of provenance metadata, subsequently referred
to as provenance graphs. The need for such techniques is par-
ticularly relevant in domains where patterns of behaviours
are important and are not readily extractable from actual
application data. Thus, our focus is on what happened,
in what order, and how often, rather than the details of
actual application data values that may result from these
processes. In this context, a fundamental problem is the
ability to determine whether provenance graphs between
two executions are similar; this allows a wide range of use
cases to be determined, such as outlier detection and process
compliance. In short, the focus of this paper is the study
of classification methods for provenance graphs according
to their similarity. Furthermore, a classification method can
no longer be a black box: in addition to being able to
determine the similarity of graphs, there is an expectation
that a description of the similarity properties of the retrieved
graphs is also provided. Thus, the classification method
must also procedurally construct explanations for a given
classification decision.

To that end, we introduce two techniques. First, similarly
to programming languages, which define types as descrip-
tions of sets of values, [11], we introduce the concept of
a provenance type as a description of a set of nodes with a
common historical context in provenance graphs; a node’s
historical context is a size-limited symbolic representation
of its past. Second, Building on such provenance types, and
the count of their occurrences in a provenance graph to
create its feature vector, we then introduce a provenance
graph kernel method to determine the similarity of two
provenance graphs. Provenance types’ symbolic represen-
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tation is an inductively defined structure that lends itself to
constructing explanations of the most influential features in
a classification decision.

We show that the computational complexity of inferring
provenance types up to depth h of the historical context
in a graph with m edges is bounded by O(h2m). We em-
ploy provenance kernels in classifying provenance graphs
in six different data sets from three application domains.
We compare the performance of provenance kernels against
that of existing graph kernels and other existing algorithms
tailored for provenance graphs in those classification tasks,
showing that provenance kernels are competitive in terms
of accuracy and at the same time as fast in terms of ex-
ecution times, while procedurally providing explanations
for their decisions. Compared to Provenance Network An-
alytics (PNA) [12], an existing classification method specific
to provenance graphs, provenance kernels outperform it
both in terms of accuracy and computation time. Relying
on a third-party technique to identify the most influential
provenance types for a particular classification task, a verbal
description is generated computationally to facilitate the
explanation of a classification decision.

In summary, the contribution of this paper is threefold:
1) The definition of the novel notion of provenance type

(Section 4.2), and
2) The definition, implementation, and evaluation of a

novel kernel method for provenance graphs, i.e. prove-
nance kernels, which are shown to perform well in clas-
sifying provenance graphs when compared to standard
graph kernels and the PNA method (Section 4.3).

3) An illustration of how provenance types can help im-
prove the explainability of classification models built
with provenance kernels (Section 6).

Section 2 introduces the definitions of provenance
graphs and motivates the problem being studied. The re-
lated work is then discussed in Section 3 with a compar-
ison of the theoretical computational complexity between
provenance kernels and existing graph kernels. Section 4
introduces the provenance kernel framework, including an
efficient algorithm to infer feature vectors from input graphs
to be used for their classification. Section 5 presents the
empirical evaluation of provenance kernels in six classifica-
tion tasks in comparison with generic graph kernels and the
PNA method. Section 6 then discusses the use of provenance
types in conjunction with LIME to explain classification de-
cisions. Finally, Section 7 concludes the paper and outlines
the future work.

2 PROVENANCE GRAPHS AND MOTIVATION

In this section, we informally introduce the notion of prove-
nance through an illustrative example. We then provide a
formal definition of provenance graphs that allows us to for-
mulate a precise problem statement, which is then tackled
in the rest of the paper. Both formal and informal definitions
of provenance follow the data model for provenance, called
PROV, standardised at the W3C [5].

Consider the problem of analysing in-hospital patient
data. For example, in classifying each patient (partial) jour-
ney into different scenarios (e.g., whether it may lead to an
in-hospital fatality). To that end, one may want to store some
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Figure 1: A provenance graph representing a hospital ad-
mission, in which a patient is admitted into a hospital ward,
and is later treated at another ward. Yellow ellipses denote
entities, blue rectangles denote activities, and orange trapez-
iums denote agents. The same patient is recorded multiple
times via different entities to represent their different states
over time.

Table 1: PROV generic labels for nodes (first three rows)
and edges in a provenance graph, and their notation used
throughout this paper. The third and fourth columns show,
respectively, the expected labels of source and destination
nodes for each edge label.

Label Notation Source Destination

Agent ag - -
Activity act - -

Entity ent - -

wasDerivedFrom der ent ent
specializationOf spe ent ent

alternateOf alt ent ent
wasInvalidatedBy wib ent act
wasGeneratedBy gen ent act

used use act ent
wasAttributedTo wat ent ag

wasAssociatedWith assoc act ag
actedOnBehalfOf abo ag ag

wasStartedBy wsb act ent
wasEndedBy web act ent

wasInformedBy wifb act act

of the relations between the patients and, for example, the
treatments applied to them, or the wards in which they were
treated. Fig. 1 shows how a provenance graph can be used
in such a case. In this short example, a patient is admitted
to a ward and then moved to another ward for treatment,
until they are eventually discharged. Note that, according
to the standardised PROV data model [5] , edges ‘point
to the past’. For example, the edge labelled ‘der’ indicates
Patient71 was derived from Patient70. For reference,
Table 1 gives the list of edge labels (which refer to past
events) and their meaning.

The three node labels shown at the top of the table are
called PROV generic labels because they are used irrespec-
tive of particular provenance applications. The labels of start
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and destination nodes connected by edges of each given
edge label are also specified in, respectively, the third and
fourth columns. For a complete description of the PROV
data model, refer to [5].

The least descriptive provenance graphs will only con-
tain the labels of Fig. 1 to categorise the nodes and edges
of the graph, and no other descriptor. In the spirit of
the Semantic Web approach, more descriptive provenance
graphs will enrich nodes and edges with type annotations,
such as Patient and Ward in Fig. 1 in a hospital context. It is
even possible for some provenance graphs to also contain
edge or node attributes – however, we do not support
such continuous attributes in our model, and expect only
categorical features. While this may appear as a restriction
to general graph practitioners, this is aligned with the na-
ture of provenance graphs, which focus on the topological
interconnection of data, rather than application data.

2.1 Provenance Graphs
We denote G = (V,E, S, L) a provenance graph in which V
corresponds to the set of nodes of G with |V | = n, E the
set of its directed edges, with |E| = m. The sets of labels of
nodes and edges of G are denoted, respectively, by S and
L. An edge e ∈ E is a triplet e = (v, u, l), where v ∈ V
is its starting point, u ∈ V is its ending point, and l ∈ L,
also denoted (when there is need to avoid ambiguity) as
lab(e), is the edge’s set of labels.1 Note that defining edges as
triplets instead of pairs allows provenance graphs to have
more than one edge between the same pair of vertices. Each
node v ∈ V can have more than one label, and thus lab(v) ∈
P(S), where P(S) denotes the power-set of S, i.e., the set of
subsets of S. Note that provenance graphs are finite, directed,
and multi-graphs (as more than one edge may exist between
the same pair of nodes). Note that, in this work, we refer
to labels as categorical features, as opposed to continuous
features (such as time, price, etc).

Considering only PROV generic labels, S = {ag, act, ent}.
In cases where application-specific labels are used, however,
set S is enlarged to also include such specific labels. These
specific labels can be used, for example, to incorporate
information otherwise not present in provenance graphs,
e.g., duration of an activity (long, short, etc.), nature of an
entity, or details of an agent (see Section 2.1 of the Supple-
mentary Material for concrete examples). Regarding edge-
labels, typically L = {der, spe, alt, wib, gen, . . . }, where the
edge (v, u, assoc), for example, indicates that activity v was
associated with agent u.

We will often work with more than one graph, and
thus we define G = (V, E ,S,L) as a (finite) family of
graphs, in which V , E , S , and L, are the union of the
sets of, respectively, nodes, edges, node labels, and edge
labels of graphs in G. For an inter-operable specification of
provenance graphs, see [5]. For a temporal interpretation
of provenance graphs, see [13], [14]. Finally, there are sev-
eral methodologies for developing software that generates
provenance graphs (see [15], [16], [17]); their description,
however, is beyond the scope of this paper.

1. We allow for edges to have more than one label, thus consider
the set of labels of an edge. We may abuse notation and write edges
without brackets when singletons. In the absence of ambiguity, we may
also abuse notation and refer to edges as simply pairs (v, u).

2.2 Problem Definition

Comparing, contrasting, and capturing similarities between
provenance graphs is key to perform classification tasks. To
that end, this paper addresses the following question: given
a set of provenance graphs G, how to establish the existence
of a positive semi-definite kernel function to compare them,
both efficiently and effectively, in order to infer classification
predictions based on them? Furthermore, how to create ex-
planations for such decisions? In the remainder of the paper,
we will introduce provenance types and provenance kernels
(Section 4), and show that they satisfy the requirements
above.

3 RELATED WORK

The notion of provenance type has been proposed as a tool
for provenance graph summarisation [18], [19]. In both these
approaches, the idea of the history of provenance nodes
being related to a sequence of transformations described by
edge labels is used. To the best of our knowledge, however,
this is the first work to explore the use of provenance
types in the context of machine learning. When comparing
the efficiency of the other summarisation methods with
our own, we find that the definition by [18] requires an
exponential time O(ndh), where d is the maximum degree
of nodes in an input graph, and n its number of nodes.
On the other hand, [19] proposed a faster algorithm that
takes O(hm), where m is the number of edges of an input
graph. This is faster than our algorithm by a factor of
h, which is typically small and does not depend on the
size of the graph. This faster algorithm, however, shares
similarities with Weisfeiler-Lehman graph kernels to a point
in which patterns with very close meaning in provenance
are classified differently. More specifically, the algorithm
does not inspect sub-trees beyond their first level in order
to discard repetitions. This is discussed in detail later in this
section and exemplified in Fig. 2.

ML techniques on graphs have been proposed in the
domain of provenance. Provenance Network Analytics
(PNA) [12], for example, creates, for each graph, a fea-
ture vector that encodes a sequence of graph topological
properties. Some of these are provenance agnostic, such as
the number of nodes, or the number of edges. Others, in
contrast, record the longest shortest paths between, e.g., two
provenance entities, or between an agent and an activity.
In Section 5, we compare the performance of provenance
kernels and PNA in the same classification tasks. For other
works in provenance and ML see [20] and [21].

Similarities between graphs have often been studied in
the context of graph classification and detection of mali-
cious activity, with a plethora of different methods being
proposed to that end (for recent surveys on graph ker-
nels, see [22], [23], and [24]). Such methods explore graph
properties using concepts such as shortest paths between
nodes [25], sub-trees [26], [27], or random walks [28], to
mention just a few. In many cases, the graphs being analysed
may have continuous or categorical labels for their nodes or
edges, but little attention has been given to developing a
graph kernel that considers both edge and node categorical
labels, a key property of provenance graphs.
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A promising field of ML algorithms for graph classifica-
tion is the one of graph neural networks (GNNs) [29], [30],
[31], [32]. They also differ in whether they take into account
edge or node labels and attributes. Some GNNs would allow
for edge weights [33], while other architectures, such as
Graph Attention Networks (GAT) [34] take into account
edge labels. There are several similarities between GNNs
and some graph kernels. The idea of message passing in
GNNs is present in several graph kernel methods, including
Weisfeiler-Lehman (WL). In fact, [35] has proven that GNNs
are as expressive as the WL isomorphism test. Similarities
aside, there are a few differences with GNN methods and
our approach with PK. For one, the training times of GNNs
in our datasets are shown to be several magnitudes higher
(see Section 5 of the Supplementary Materials for more
details), although it must be noted that training of GNNs
cannot be directly compared with training of graph kernels.
On the explainability side, whilst there is a lot of work on
explaining GNNs without the creation of feature vectors,
the explainability strategy presented in this paper is not
immediately applicable to GNNs since our explainability
approach relies on feature vectors representing substruc-
tures of the graphs themselves. See [36] for GNNs applied to
knowledge graphs with a focus on missing links and nodes.

Provenance kernels compare and classify graphs, as op-
posed to comparing and classifying nodes on graphs. A clas-
sic example to highlight their difference is the task of clas-
sifying a social network as a whole, such as communities,
versus the classification of nodes within a social network,
such as people who influence that network in a certain way.
For the former, one can use graph kernels, whereas, for the
latter, one may use what is often known as kernels on graphs
or graph embedding techniques. A notable example of the
graph embedding technique is Struc2Vec [37], which is a
learning technique based on the structural identity of nodes
on graphs that embed nodes into a Euclidean space accord-
ing to the structure of their neighbourhood. Similarly to
provenance kernels, Struc2Vec has a hierarchical approach
when looking at the structure of the neighbourhood of
nodes. The main difference to our work is that Struc2Vec
does not consider edge nor node labels, but instead the
number of occurrences of neighbouring elements (and their
degrees). Another commonality is that both works define
a distance between nodes based on their neighbours and a
suitable metric. In the context of knowledge graphs, graph
embedding was used for link prediction [38]. Struc2Vec used
implicit computations to compare a pair of graphs, while
[38] introduced explicit methods allowing for faster compu-
tation (for a survey on similar models, see [39]). ML methods
for Resource Description Framework (RDF) graphs have
been studied by [40] (RDF2Vec), [41] and [42]. Other known
approaches that for example aim to find missing labels or
links in graphs include NodeSketch [43], DeepWalk [44],
and Node2Vec [45].

Using the classification from [24], we can place prove-
nance kernels in the Information Propagation graph kernel
family, and, more specifically, in the group of Kernels based
on iterative label refinement. That is because we iteratively
update node labels up to h times based on the other node
labels. Other graph kernel methods in the same family
include Neighbourhood Hash kernels (NH) [46], Weisfeiler-

der der gen

der gen
der use

der gen

der gen use

Figure 2: Two examples of different tree-patterns that have
a similar meaning in provenance. Yellow circles denote enti-
ties, blue squares denote activities, and plain circles denote
nodes of which types are not captured by the algorithm.
Provenance kernels classify both these tree-patterns as the
same 2-type, i.e., ({der, gen}, {der, gen, use}, {act, ent}).

Lehman kernels (WL) [26], and Neighborhood Subgraph
Pairwise Distance kernel (NSPD) [47]. Out of those, only the
latter originally took into account the edge labels in addition
to node labels in its classification. A possible extension
for labelled edges, however, is mentioned in WL original
work [26] and made explicit by [48].

On the other hand, the WL graph kernel algorithm
presented by [26] does not consider edge labels. A close
variant to this WL extension was also proposed by [19], with
the differences that (1) repetitions of branches from the same
given parent in its walk-tree are discarded and; (2) although
all edge-labels were considered, only nodes at the leaves of
trees had their labels taken in account. Another close variant
of WL, that uses truncated trees as features, was proposed
recently in [49]. Discarding repetitions, however, is key to
reducing the sizes of feature vectors by putting together
patterns that have a similar meaning in provenance. In
this paper, we extend this process further by agglutinating
even more similar patterns into the same provenance type.
Fig. 2 shows two examples of such types. In essence, the
extra sequence of two derivations in Pattern 1 does not
add qualitative meaning to the set of transformations that
lead to the creation of the root node. Thus, provenance
kernels consider these two patterns as having the same type.
One can see provenance types for provenance kernels as a
flattened version of the ones defined by [19] since the idea
of branches is hidden by the sole enumeration of labels at a
given depth.

In terms of theoretical computational complexity, prove-
nance kernels are situated in the efficient spectrum. Note
that with provenance kernels, the computational complex-
ity for one graph with m edges, O(h2m), is bounded by
O(h2nd), where d is the maximum (out) degree, and n is
the number of nodes of this graph. Also, m = nd if and
only if the input graph is regular. Graphlet Sampling kernel
(GS) [50] counts the number of small subgraphs present
in each input graph. These small subgraphs typically have
size k ∈ {3, 4, 5}. The original time required to run this
kernel, O(nk), is prohibitively expensive. Later, [51] im-
proved this bound to O(ndk−1), where d is the maximum
degree of nodes in an input graph. Neighbourhood Hash
kernel (NH) [46] compares graphs by counting the number
of common node labels, which are updated with the em-
ployment of logical operations that take into account the
label of neighbouring nodes. These operations do not use
the original categorical node label, but a binary array, so
XOR operations can be employed. The complexity of this
kernel is bounded by O(bhnD̄), where D̄ is the average
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degree of the vertices, h is how many times the update
is executed, and b is the number of bit labels. We need
2b− 1≫ |Σ|, the size of the label set. Finally, Neighborhood
Subgraph Pairwise Distance kernel (NSPD) [47] compares
subgraphs S in the neighbourhood of nodes up to a distance
r for all pairs of nodes in a given graph. The complexity,
O(n|S||E(S)| log |E(S)|), is such that S is the subgraph
induced by the neighbourhood of a vertex and radius r.
E(S) is the number of edges of S.

We can see that some of the theoretical gaps in running
times between provenance kernels and the others discussed
above come down to variables that do not depend on a
graph’s size or topology, such as the number of bit labels
or the size of graphlets. Others, such as the maximum
degrees and number of edges of neighbourhood subgraphs,
are more dependent on input graphs and tend to have more
impact on running times, which indicates that provenance
kernels are computed faster. These differences are reflected
in the empirical running times evaluated in Section 5, in
which we show that provenance kernels outperform the
three methods described above (GS, NH, and NSPD) in
terms of efficiency. Moreover, none of these is designed to
take as input the edge categorical labels of graphs. Subgraph
Matching kernel, on the other hand, does consider both
edge and node labels as it counts the number of com-
mon subgraphs of bounded size k between two graphs.
It requires, however, an impractical computational running
time of O(knk−1), where n this time stands for the sum of
sizes of the two graphs being compared. In fact, this kernel
timed out in our experiments and its accuracy could not be
measured.

Table 2 presents a summary of all graph kernels to be
compared to provenance kernels in Section 5. In this table,
we note whether node or edge categorical labels were taken
into account in the implementation we used, as well as
their theoretical complexity. We now briefly discuss the re-
maining kernel methods. The Shortest Path kernel (SP) [25],
for each graph, constructs a new graph that captures the
original graph’s shortest paths and then uses a base kernel
to compare two shortest path graphs. The complexity of SP
is O(n4). We use the algorithm of Vertex Histogram (VH)
and Edge Histogram (EH) kernels as presented by [52]. VH
creates, for each graph, a feature vector that captures the
number of nodes with each given node label l, whereas
EH does the analogous for edge labels. Their computational
complexities are O(n) for VH and O(m) for EH. Note that
provenance kernels of depth 0 coincide with VH. Hadamard
Code kernel (HC) [53] is similar to NH, even by showing the
same computational complexity. It explores the neighbour-
hood of nodes iteratively for different levels (or depths). Its
name comes from the use of Hadarmard code matrices.

Finally, when compared against the PNA method, prove-
nance kernels outperform in theoretical computational com-
plexity. One of the features considered in the PNA method is
the longest shortest path between two nodes of a given label
(two entities, one entity and one activity, and so on). This
gives us a lower bound for PNA’s computational complexity
of Ω(nm).

4 PROVENANCE KERNEL FRAMEWORK

In this section, we motivate and present a graph kernel
method inspired by particular characteristics of provenance
graphs, namely, labelled nodes and edges, and their under-
pinning temporal semantics. We base our definitions on the
PROV data model [5], a de jure standard for provenance
data. We first present some background, including a defini-
tion of kernel functions. We then move to our contributions:
motivate and formally define provenance types, provide a
formal definition of provenance kernel, to finally present an
algorithm to infer provenance types, analysing its theoreti-
cal computational complexity.

4.1 Preliminaries

We formally introduce graph concepts and kernel functions,
to be used in our definition of provenance kernels later in
this Section.

The forward-neighbourhood of a given node v ∈ V is the
set of nodes it “points to”, i.e., v+ = {u | (v, u, l) ∈ E}.
Analogously, the backward-neighbourhood of v is denoted by
v− = {u | (u, v, l) ∈ E}. We say a node u is distant from v
by x if there is a walk from v to u of length x, where v is the
walk’s starting node, and u its ending node. That is, there is
a sequence of x (not necessarily distinct) consecutive edges
starting at v and ending at u. More formally, a sequence
(e1, . . . , es) consists of consecutive edges if for 1 ≤ i < s, the
pair ei = (vi, ui, li) and ei+1 = (vi+1, ui+1, li+1) is such that
ui = vi+1. The x + 1 nodes in a walk of length x need not
be distinct, as provenance graphs allow for cycles in specific
circumstances (see the end of section). A path, on the other
hand, is defined as a walk where nodes are not repeated.

A function k : X × X → R is called a valid kernel on
set X if there is a real Hilbert space H and a mapping ψ
such that k(x, y) = ⟨ψ(x), ψ(y)⟩. In order to show such a
Hilbert space exists (and therefore k is called its reproducing
kernel), it is enough to prove that k is symmetric and positive
semi-definite (p.s.d.) [54, Theorem 3], i.e., for every subset
{x1, . . . , xt} ⊂ X , we have that the t × t matrix M defined
byM(i, j) = k(xi, xj) is p.s.d. ForM to be p.s.d., we simply
need

∑
i,j cicjM(i, j) ≥ 0 for any constants c1, . . . , ct ∈ R.

In this work, we will study provenance kernels in both
scenarios: when application-specific labels are provided and
when they are not. In terms of the generality of graph
structures considered in this paper, however, observe that
the existence of cycles may not be discarded entirely: a long-
running activity a that generates e, i.e., there is an edge
gen(e,a), and at a later stage uses e, i.e., there is a new edge
use(a,e), creates a cycle. This is to say that, although edges,
for well-defined provenance, in general, ‘point to the past’,
cycles cannot be excluded. For this reason, our definitions
do not impose restrictive assumptions such as acyclicity.
Indeed, definitions apply to a general graph with labelled
edges and nodes.

4.2 Provenance Types

Consider a node v in a provenance graph. The set of edges
starting at this node may be seen as related to its recent
history, i.e., such edges point to other nodes that may, in the
case of entities, be the activity that generated it, or, in the
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Table 2: The graph kernels evaluated in Section 5 and their properties: whether node and edge categorical labels are
considered and their theoretical computational complexity. Symbol ≈ indicates that the support depends on the choice of
the base kernel.

Kernel Method Node label Edge label Complexity

Provenance Kernels (PK) ✓ ✓ O(h2m)
Shortest Path (SP) ✓ - O(n4)

Vertex Histogram (VH) ✓ - O(n)
Edge Histogram (EH) - ✓ O(m)

Graphlet Sampling (GS) - - O(ndk−1)
Hadamard Code (HC) ✓ ≈ O(hm)

Weisfeiler-Lehman (WL) ✓ ≈ O(hm)
Neighbourhood Hash (NH) ✓ - O(hm)

Neigh. Subgraph P. Dist. (NSPD) ✓ ✓ O(n|S||E(S)| log |E(S)|)

case of activities, be the agent responsible for its execution.
Going further, edges that are, in turn, connected to the
neighbours of v, represent the earlier history of v, and so on.
The idea of capturing the label of such edges, as well as that
of nodes, taking into account their distance to the root, is at
the core of what we define as provenance types. Provenance
types are the building blocks of provenance kernels.

We first show an example of how node names and labels
appear in a provenance graph.

Example 1. Refer back to Fig. 1. It depicts an example of a
short patient hospitalisation, from admission to discharge. Here,
V = {person13,patient70,ward27, . . . }, while S =
{ent, ag, act}. If application-specific types are used, S is enlarged
to include labels such as mimic:Patient, mimic:Ward, etc.
We adopt the de facto colour and layout convention for provenance
graphs that shows entities as yellow-filled ellipses, activities as
blue-filled rectangles, and agents as orange-filled trapeziums.
Time flows downwards in this convention, in which the entities
patient70, . . . ,patient73 represent the different ‘states’ of
the same person originally represented by node person13,
culminating at patient73 which also contains the provenance-
specific label mimic:DischargedPatient, indicating that the
hospitalisation ended with the patient’s discharge. The activities
in this scenario are those that either admit the patient to a ward
(admitting3) or represent a treatment (treating5). Each is
associated with the respective hospital ward in which the activity
took place.

As a motivation for provenance types, consider nodes
admitting3 and treating5 in Fig. 1. We can say that
they share some similarities as both represent activities in
this provenance graph, even though one is an admission
and the other a treatment. Further, we can say that they
share even more similarities as they are related to entities
(via the use relation) and to some agent (via the assoc edge
label). Going one step further, however, these nodes do not
share the same ‘history’: treating5 used an entity which
was, in turn, generated by some other activity, whereas
admitting3 did not. We formalise this idea of capturing
a simplification of a node’s history as the provenance types of
a node. First, we define label-walks, which will later be used
in our definition of types.

Definition 1 (Label-walk). Let G = (V,E) be a directed multi-
graph, and let w = (e1, . . . , eh) be a sequence of h consecutive
edges from v to u.We define a label-walk as

LAB(w) = (lab(e1), lab(e2), . . . , lab(eh), lab(u)) (1)

LAB(w) is then a sequence of h edge labels followed by the label
of vertex u ∈ V . Thus, we say that LAB(w) is a label-walk of
length h. We further defineWh(v) to be the set of all label-walks
of length h starting at a given node v. In the degenerated case
of h = 0, the start and end nodes coincide and thus W0(v) is
defined by simply (lab(v)).

In simple terms, a label-walk is the sequence of the labels of
edges along a walk followed by the label of its ending node.
The intuition behind capturing the label of ending nodes of
walks is twofold. First, we are able to define a base case, in
which we consider a walk of null size, i.e., capturing only
the node’s labels (recall it can be a set). Secondly, we are
able to make use of application-specific node labels (such
as mimic:Patient, in Fig. 1), which may provide crucial
information for the analysis of provenance data.

Example 2. In this example, we consider only PROV generic
types. Consider the sequence of two consecutive edges given
by w =

(
(patient73, treating5, gen), (treating5,

patient72, use)
)

. We have LAB(w) = (gen, use, ent). More-
over,W2(patient73) = {(gen, use, ent), (gen, assoc, ag),
(der, der, ent), (der, gen,act)}.

Note that label-walks do not necessarily follow shortest
paths. In fact, we will in the following definition introduce
the idea of provenance h-types, which use all label-walks of
a given length and from a given node.

Definition 2 (Provenance h-types). Let G be a graph and v ∈
V . LetWh(v) be the set of all label-walks of length h starting at
v. We now capture all the labels that are equally distant from v:
for h ≥ 1, we define, for 1 ≤ i ≤ h,

τhi = {lab(eh−i) | (lab(e1), lab(e2), . . . , lab(eh),
lab(u)) ∈ Wh(v)}

(2)

as the set of edge labels that are at a distance (h − i)-th when
counting from v.2 For i = 0, we define

τh0 = {lab(u) | (lab(e1), . . . , lab(eh), lab(u)) ∈ Wh(v)} (3)

We define the provenance h-type of v as the sequence of sets

ϕh(v) = (τhh , . . . , τ
h
0 ) (4)

2. This apparent reversed choice of indexing will simplify the algo-
rithm to infer such provenance types. The intuition is that, with this
notation, τh0 always refers to node labels for any h.
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In the case Wh(v) = ∅, i.e. there is no walk of length h from
v, we define ϕh(v) = ∅. When clear from the context, we shall
denote τhi (v) as simply τi(v), or even τi.

For the degenerate case of h = 0, we define ϕ0(v) =
W0(v) = (lab(v)).

Example 3. Consider patient73 discussed in Example 2. Its
2-type combines the label-walks inW2(patient73) to generate:

ϕ2(patient73) =

= ({gen, der}︸ ︷︷ ︸
τ2
2

, {use, assoc, der, gen}︸ ︷︷ ︸
τ2
1

, {ag, act, ent}︸ ︷︷ ︸
τ2
0

) (5)

Further, consider nodes admitting3 and treating5 once
again in Fig. 1. Their 0-types, 1-types, and 2-types are:

ϕ0(admitting3) = ϕ0(treating5) = ({act})
ϕ1(admitting3) = ϕ1(treating5) = ({assoc, use},

{act, ag})
ϕ2(admitting3) = ({use}, {der}, {ent})
ϕ2(treating5) = ({use}, {der, gen}, {act, ent})

Both of these examples used only PROV generic types. However,
when using application-specific types for the same two nodes
admitting3 and treating5, on the other hand, we have
({act,mimic:Admitting}) = ϕ0(admitting3) ̸=
ϕ0(treating5) = ({act,mimic:Treating}).

Note that two different sets of label-walks may give rise
to the same provenance type, although the converse is not
true, i.e., two different types cannot come from the same set
of label-walks. This implies that the function that maps sets
of label-walks to types is not, in general, injective. We claim
that this is beneficial as it unifies different sets of label-walks
that have similar meanings in provenance. Note also that
multiple occurrences of the same walks starting at v do not
affect the provenance types of v as opposed to just one copy
of each different walk. Note also that the eventual presence
of cycles does not pose any ‘feedback loop’ problem due to
the fact that types are defined recursively - a h-type depends
only on h̃-type for h̃ < h.

4.3 Provenance Kernel

Finally, we define the mapping of graphs into a high dimen-
sional space by simply counting the number of occurrences
of each provenance h-type up to depth h. We formally define
a feature vector as follows.

Definition 3 (Feature Vector). Let G be a family of graphs
and define ϕh(V) = {F1, . . . , Fs} as the (enumerated) set of all
provenance types of depth up to h encountered in V . The feature
vector of a graph G ∈ G is given by:

VECh(G) = (x1, x2, . . . , xs) (6)

where xi =
∣∣{v | ϕh(v) = Fi, and v ∈ G}

∣∣
We apply this definition to our graph in Fig. 1 as an

example.

Example 4. Consider the provenance graph G depicted in Fig. 1.
In order to infer VEC 1(G), we need G’s 0-types and 1-types.

There are three of the former and four of the latter, and we denote
them by:

F1 = ({act}), F2 = ({ag}), F3 = ({ent}),
F4 = ({assoc, use}, {act, ag}), F5 = ({spe}, {ent}),
F6 = ({der}, {ent}), F7 = ({gen, der}, {act, ent})

Thus
VEC 1(G) = (5, 2, 2, 2, 1, 1, 2) (7)

We now use the definition of a feature vector to define
provenance kernels.

Definition 4 (Provenance Kernel). Given two graphs G,G′ ∈
G and ϕs(V) for all 0 ≤ s ≤ h, we define the kernel between G
and G′ as

kh(G,G′) =
h∑

s=0

⟨VECs(G),VECs(G′)⟩ (8)

where ⟨x, y⟩ denotes the dot product between x and y.

Note that types found in one graph may not occur in
the other, in which case a zero entry must appear in the
relevant dimension of a feature vector. In order to keep
track of which type corresponds to which dimension, one
can order all Fj found across all graphs for a given depth
(say, by alphabetical order). With that, the dimension of a
given type is well-defined.

The goal of kernels in general is to create representations
of the data (graphs, in case of graph kernels) in a high
dimensional space in which the classes are linearly sepa-
rable. In practice, it is not always the case that such goal
is fully achieved. Nonetheless, better separation of the data
generally leads to improved results, though overfitting may
occur if the kernel is too fine-grained.

In order to avoid having to infer the feature vector for the
same graph G multiple times (each time we want k(G,G′)
for some G′), we may first infer all feature vectors and then
calculate the inner products between each pair of graphs,
similarly to the approach proposed by [26].

Proposition 5. Provenance kernels are positive semi-definite.

Proof. Let c1, . . . , ct ∈ R and G1, . . . , Gt ∈ G.
Consider for a given depth s and pair of in-
dices i, j, the dot product ⟨VECs(Gi),VECs(Gj)⟩. Then,∑t

i=1

∑t
j=1 cicj⟨VECs(Gi),VECs(Gj)⟩ =

⟨
∑t

i=1 ciVECs(Gi),
∑t

j=1 cjVECi(Gj)⟩ ≥ 0. The inequality
follows from the fact that both sums add to exactly the
same value and from ⟨x, x⟩ ≥ 0 for all x. Since the sum of
non-negative numbers is non-negative, kh is positive semi-
definite.

4.3.1 The Algorithm
We now present an algorithm that infers all ϕi for 0 ≤ i ≤ h
for nodes in a family of graphs G in O(h2M), where M
is the total number of edges among graphs in G. For a
single graph, the algorithm runs in O(h2m), where m is
the number of edges in the graph.

Fig. 3 provides an algorithm to infer provenance h-types.
First, we initialise all types ϕi(v) with the empty set for all
depths up to h and all nodes. Moreover, we initialise as
empty sets the building blocks of our h-types that record
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Algorithm 1: INFERRING TYPES UP TO h (V, E , h)
1 i n i t i a l i s e for a l l v ∈ V and for a l l i ≤ h
2 ϕi(v)← ∅
3 for a l l 0 ≤ j ≤ i , τ ij(v)← ∅
4 for v ∈ V
5 τ00 (v)← lab(v)
6 ϕ0(v)← (τ00 (v))
7 for 1 ≤ i ≤ h
8 for each e = (v, u) ∈ E s . t . ϕi−1(u) ̸= ∅
9 τ ii (v)← τ ii (v) ∪ lab(e)

10 for 0 ≤ j ≤ i− 1
11 τ ij(v)← τ ij(v) ∪ τ i−1

j (u)
12 ϕi(v)← (τ ih(v), . . . , τ

i
0(v))

13 return ϕi(v) for a l l v ∈ V and 0 ≤ i ≤ k

Figure 3: An algorithm that receives nodes and edges of a
family of graphs, a parameter h, and outputs all provenance
types ϕ0(v), . . . , ϕh(v) for all nodes v.

the labels of edges at a given distance from each node (lines
1-3). The intuition behind this explicit initialisation is that if
we do not update a given ϕi(v), the empty set will indicate
that there are no label-walks of size i starting at v. This will
be used later as a condition in line 8.

The loop starting at line 4 computes the the base case of
our algorithm: the 0-type of all nodes, i.e., ϕ0(v), which is
simply the set of labels of v for each v ∈ V . Each iteration
of the loop starting in line 7 will infer the i-type for all
nodes. We first loop through all edges in E that can ‘lead us
somewhere’. In other words, we are considering only edges
e = (v, u) that belong to walks of size i starting at v. This is
true if and only if ϕi−1(u) ̸= ∅. We then ensure that labels of
e are added to the set τ ii (v) (line 9). Finally, the loop starting
at line 10 adds to the set of τ ij(v) the labels from set τ i−1

j (u).
We can finally in line 12 construct the entire i-type for all
nodes.

To see that the algorithm correctly infers provenance
types, note that line 8 guarantees that all label-walks of
length i starting at v will be identified. Further, the lines 10
and 11 make sure that all labels in each of these label-walks
will be fully inspected and added to v’s type accordingly.

4.3.2 Complexity Analysis

We are now showing that we need O(h2M) operations
to infer the ϕh(v) for each node v in a family of graphs
G1, . . . , Gs := G. Here, N stands for the sum of the number
of nodes in all provenance graphs and M for the sum of the
number of edges. We borrow part of the argument from [26].
Lines 1-3 can be done in O(h2N), since we are initialising
1
2 (h+1)(h+2) sets for each node in V . Lines 4-6 take O(N).
Let us now investigate the for loop initiated in line 7. We
are entering this loop h times, and in each of them we are
investigating each edge at most once (loop stating in line
8), and finally, for each edge, we are performing at most
h pairwise operations on sets of constant size (bounded by
max{|T | , |L|}). Line 12 takes O(N). Thus loop starting at
line 7 can be done in O(h2M), assuming N = O(M), which

gives us the overall running time bounded by O(h2M)
when we assume N = O(M).3

5 EMPIRICAL EVALUATION

As a tool for extracting features from provenance graphs,
provenance kernels can be used to compare one provenance
graph to another and build classifiers for them. To demon-
strate the approach, we employ provenance kernels in clas-
sification tasks on six provenance data sets (see below). In
our evaluation, we compare the accuracy of provenance
kernels against generic graph kernels and the PNA method
(discussed in Section 3) in the same classification tasks.
We describe the evaluation methodology in Section 5.2 and
report the evaluation’s results in Section 5.3.

5.1 Data sets and classification task

We employed six provenance data sets in our evalua-
tion; they were produced by three different applications:
MIMIC [55], CollabMap [56], and a Pokémon Go simulator.
These applications cover a spectrum of human and compu-
tational processes. The first, MIMIC, records solely human
activity; the second, CollabMap, is created with compu-
tational workflows driven by human inputs, whereas the
Pokémon Go simulator is a fully synthetic system. Section 2
of the Supplementary Materials provides more details on
these applications and their six data sets (summarised in
Table 3). In brief, each data set contains multiple provenance
graphs recorded in the three applications; each graph is
associated with a label.

• MIMIC provenance graphs describe the journey of pa-
tients going through a hospital, e.g. the ward they
stayed in, the treatments they received and who per-
formed those procedures. Each graph is associated with
a label representing in-hospital mortality, which has
either a value of 0 or 1.

• The CollabMap application provides three data sets:
CM-B, CM-R, and CM-RS, which, respectively, contain the
provenance graphs for the buildings, routes, and route
sets created by CollabMap contributors. Each graph is
associated with either a label ‘trusted’ or ‘uncertain’,
representing the level of uncertainty associated with a
building, route, or route set (as judged by an expert).

• The Pokémon Go simulator generated two data sets,
PG-T and PG-D. A provenance graph therein recorded
the activities of a (simulated) Pokémon Go player fol-
lowing their own team’s game strategy on targeting
Pokémons (PG-T) and disposing of Pokémons (PG-D).
Each graph is associated with the team’s name, either
Valor, Mystic, or Instinct.

Given a provenance graph from a data set, the classification
task here is to predict or re-infer the label associated with
that graph; see Table 3 for an overview of the six classifica-
tion tasks.
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Table 3: The classification tasks, the number of samples picked from each data set, and the number of application types
present in each data set (in addition to PROV generic types).

Application: MIMIC CollabMap Pokémon Go simulator
Data set: MIMIC CM-B CM-R CM-RS PG-T PG-D

Classification labels: 0/1 trusted/uncertain Valor/Mystic/Instinct
Random baseline: 50% 50% 50% 50% 33% 33%

Sample size: 4,586 1,368 2,178 3,382 1,200 1,200
No. application types: 125 8 8 8 8 8

MIMIC DB

Pokemón Go
Simulator

CollabMap
Application

Provenance 
Network Metrics

Gram 
Matrix

Provenance
Type Counts

SVM

ML methods

SVMGraKeL
Graphs

provenance
kernels

provenance
network metrics

GraKeL
graph kernels 

Classifier

cross validation 

PROV Graphs

Figure 4: Overview of the evaluation pipeline. Six data sets of labelled provenance graphs from three applications are used
to build classifiers using provenance kernels, generic graph kernels (from the GraKeL library), and provenance network
metrics (PNA). Repeated 10-fold cross-validation is carried out to measure the classification accuracy of each method. We
also measure the time each method takes to produce their kernels/network metrics (i.e. the yellow step).

5.2 Methodology
For each classification task, in order to ensure the robust
evaluation of provenance kernels’ performance compared
to that of existing graph kernels and the PNA method, we
carry out the following: balancing the input data set (if un-
balanced), training classifiers with provenance kernels (PK),
generic graph kernels, and provenance network metrics,
measuring the performance of each classifier, and compar-
ing their performance. An overview of the full evaluation
pipeline, implemented in Python, is depicted in Fig. 4.
Data balancing The MIMIC and CollabMap data sets are
significantly skewed, being originated from real-world hu-
man activities. Therefore, for those data sets, we balance
the number of samples in each class by selecting all the
samples in the minority class and randomly under-sampling
the majority class to produce a balanced data set. Table 3
shows the number of samples used in each classification
task after balancing.
Classification methods In addition to building classifiers
for a classification task in question using provenance ker-
nels, we also build classifiers using existing graph kernels,
implemented by the Grakel library [57], and the provenance
network metrics as proposed in the PNA method [12].

• Provenance Kernels: A provenance kernel is built
on provenance types of depth up to a specified

3. We empirically evaluated the computational cost of the algorithm
over randomly-generated provenance graphs of various sizes and
found that it scales linearly with the number of nodes in a graph. See
Section 4 for more details.

level h that may include (1) only the PROV generic
(application-agnostic) types, i.e. ent, act, and ag, or (2)
application-specific types (such as the mimic:Patient
and mimic:Ward types shown in Fig. 1) in addition
to the PROV generic types. We test both provenance
kernels using only generic types and those including
application types in our evaluation; we call the former
group PK-G and the latter PK-A. We also evaluate
provenance kernels for different levels of h, from 0 to 5.
Hence, the methods we test in these two groups are: G0,
G1, . . . , G5, A0, . . . , A5; the first letter in their names
denotes whether they use only PROV generic types (G)
or not (A) and the second denotes the specified level h;
twelve PK-based methods are tested in total.

• Graph Kernels: The graph kernels we test are Short-
est Path (SP) [25], Vertex Histogram (VH) [52], Edge
Histogram (EH) [52], Graphlet Sampling (GS) [51],
Weisfeiler-Lehman (WL) [26], Weisfeiler-Lehman Op-
timal Assignment (WL-OA) [58], Hadamard Code
(HC) [53], Ordered Dag Decomposition (ODD) [59],
Neighbourhood Hash (NH) [46], Neighbourhood Sub-
graph Pairwise Distance (NSPD) [47].4 Similar to prove-
nance kernels, Weisfeiler-Lehman and Hadamard Code
kernels can be computed up to a specified level h; we
test those kernels with h ∈ [1, 5]. Hence, a total of 16
graph kernels are tested. As shown in Fig. 4, support-

4. We also tested other kernels provided by the Grakel library. How-
ever, they either timed out or produced errors when processing graphs
in our data sets and, hence, are not included in our evaluation.
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vector machines (SVM) are used to build classifiers
from both provenance kernels and generic graph ker-
nels. Among the tested graph kernels, the SP, GS, ODD,
NH, NSPD, WL-OA kernels take a significantly longer
time to run compared to the rest. We, therefore, for
comparison purposes, put these methods in a group
called GK-slow and the remaining kernels in GK-fast.

• Provenance Network Analytics: The PNA method cal-
culates 22 network metrics for each provenance graph
and using those as the feature vector for that graph.
Such feature vectors can be readily taken as inputs
by a variety of ML classifiers. Given the six data sets,
we are uncertain which classifiers work best with their
provenance network metrics; hence, we employ a host
of off-the-shelf algorithms to build classifiers on the
metrics and pick the most accurate classifier for our
performance comparisons. The chosen algorithms are
Decision Tree (DT), Random Forest (RF), K-Neighbour
(KN), Gaussian Naive Bayes (NB), Multi-layer Percep-
tron neural network (NN), and Support Vector Ma-
chines (SVM).5 Hence, six methods are tested in total,
all are provided by the Scikit-learn library [60]. This
group of classifiers, which rely on provenance network
metrics, is called PNA.

For methods that rely on SVM, its C parameter is optimally
chosen from a grid search (with an inner cross-validation
process) from {10−4, 0.001, 0.01, 0.1, 1.0, 10, 100, 1000} to
give the best accuracy. GNNs, as discussed in previous
work, focus on generalising the message passing concept
at the same time as using a neural network architecture.
The comparison with graph kernel methods, however, is
not direct: there is no creation of feature vectors or kernel
matrices; and as a consequence the training time in GNNs
includes both creation of features and the classification
ML algorithm for graph kernel methods. In theory, GNNs
should take longer to train. In practice, that is also what
we observe. Please refer to the supplementary material for
details.

Performance metrics The performance of each method is
measured by its accuracy, defined as the number of correct
predictions over the total number of samples, in predicting
the correct label of a provenance graph which is provided
with the above data sets. To robustly measure the perfor-
mance, 10-fold cross-validation is employed. In particular,
with all the available provenance graphs randomly split
into 10 equal subsets, we perform 10 rounds of learning; on
each round, a 1/10 subset is held out as the test set and the
remaining are used as training data. This process is repeated
10 times; hence, 100 measures of accuracy are collected for
each method per experiment. In addition, to understand the
computation cost of each method, we measure the time it
takes to produce provenance kernels, graph kernels, and
provenance network metrics (the yellow step in Fig. 4) given
the same data set used in a classification task. The time
measurements do not include the time taken in training the
classifiers nor the time preparing the input GraKeL graphs.

5. The parameters to set up the above algorithms are provided in
a Jupyter notebook as detailed in Section 3 of the Supplementary
Materials.

Table 4: Within each data set, we report the time cost of
the best-performing method (shown in parentheses) from
each comparison group relative to the time taken by the best-
performing PK-A method (whose time cost is shown as 1x).

PK-G PK-A GK-fast GK-slow PNA

MIMIC 4.3x (G5) 1x (A0) 2x (WL2) 243x (GS) 280x
CM-B 1.7x (G2) 1x (A0) 2x (HC3) 60x (WLO4) 160x
CM-R 0.9x (G4) 1x (A5) 1x (WL2) 37x (WLO5) 92x

CM-RS 0.9x (G5) 1x (A3) 1.8x (WL4) 57x (WLO5) 104x
PG-T 0.7x (G3) 1x (A3) 0.7x (WL5) 4.8x (ODD) 80x
PG-D 1.6x (G5) 1x (A2) 1x (WL5) 4.1x (SP) 166x

Comparing performance Due to the large number of
methods evaluated from the five groups (i.e. PK-G, PK-
A, GK-slow, GK-fast, PNA), we report here only one best-
performing method from each group, i.e. the one with the
highest mean classification accuracy within its group. We
then compare the mean accuracy of the best-performing
PK-based methods (i.e. PK-G, PK-A) against those from
the remaining three groups to establish whether PK-based
methods offer improved accuracy in the six classification
tasks over existing graph kernel and PNA methods. In
order to ensure that our comparison results are statisti-
cally significant, we carry out the Wilcoxon–Mann–Whitney
ranks test [61, Ch. 10], also known as the Wilcoxon rank-
sum test, when comparing the accuracy measurements of
two methods. If the test produces a p-value that is less
than 0.05, we reject the null hypothesis that states that
the accuracy measurements are from the same distribution,
i.e one method performs statistically better than the other.
Otherwise, both methods are considered to have a similar
level of performance. In addition, in real terms, we disregard
accuracy differences of less than 1% and consider the corre-
sponding methods to have a similar level of performance.

5.3 Evaluation Results
In this section, we report the performance of provenance
kernels (PK-G and PK-A) compared to that of existing
generic graph kernels (GK-slow and GK-fast) and the PNA
method (PNA) across the classification tasks corresponding
to the six provenance data sets (MIMIC, CM-B, CM-R, CM-RS,
PG-T, and PG-D). As previously mentioned, for brevity, we
only report the best-performing method in each group in
terms of their mean classification accuracy.
Computational costs Before delving into the performance
of the five comparison groups, it is pertinent to have an
idea of the time costs incurred by them. Within each classi-
fication task, using the time cost of the best-performing PK-
A method as the relative time unit (i.e. 1x), Table 4 shows
the relative time costs6 of the best-performing method from
each comparison group as multiples of the chosen time unit.
Formally, let X ∈ {PK-G,PK-A,GK-fast,GK-slow,PNA}.
The entry for a given data set associated with the com-
parison group X is given by (time-of-best-in-X) divided by
(time-of-best-in-PK-A), where ‘time-of-best-in-X’ stands for
the time cost of the most accurate method in X, whereas
‘time-of-best-in-PK-A’ stands for the time taken by the most
accurate PK-A method.

6. The actual time costs are provided in the online Jupyter notebook.

https://nbviewer.org/github/trungdong/provenance-kernel-evaluation/blob/master/plots.ipynb
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Figure 5: The relative time costs of the best-performing
methods reported in Table 4 plotted on the log scale. The
time cost of the best PK method is 1x.
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Figure 6: The mean classification accuracy of the best-
performing provenance kernels, generic graph kernels, and
PNA method across the six classification tasks. The error
bars show the 95-percent confidence intervals.

We also plot those time costs in Fig. 5 using the loga-
rithmic scale to highlight their differences. Across the data
sets, the PK-G and PK-A methods take somewhat a similar
time to produce the provenance kernels from the same set of
provenance graphs. Their differences are mainly due to the
different h levels (of type propagation). We observe more
variation in relative time costs of the GK-fast group’s meth-
ods, but they stay in the same magnitude of scale. The best-
performing graph kernels in the GK-slow group, however,
take between 4x to 200x longer than the baseline PK method
to compute. The PNA method is the slowest, taking 80x to
280x longer (to compute the provenance network metrics
for the same set of provenance graphs). Understanding
the computational cost of each method, in addition to its
classification performance, will be useful when deciding
whether it is suitable for a given classification task.

Classification accuracy Fig. 6 plots the mean accuracy of
the best-performing provenance kernels compared against
that of the best-performing graph kernel and the best-
performing PNA method in the six classification tasks (see
Table 4 for the identifier of the best-performing method in
each group, shown in parentheses). At first glance, in each
task, the accuracy levels attained by the five comparison
groups are broadly close and significantly above the random
baseline. This shows that the proposed provenance types
employed by PK-based methods, the graph information

Table 5: Summary of the accuracy differences between
the best-performing PK-A method and the best-performing
method in the PK-G, GK-slow, GK-fast, and PNA groups.
An “=” sign means the accuracy difference is not signifi-
cant; while a positive/negative value shows how much the
PK-based method outperforms/under-performs the corre-
sponding GK/PNA method, respectively.

Data set: MIMIC CM-B CM-R CM-RS PG-T PG-D

PK-G +3% = +4% +1% +16% +3%
GK-slow = = = = +13% =
GK-fast = = = = +15% +3%

PNA +4% = +4% +3% +16% +7%

relied on by GK methods, and the provenance network
metrics used in PNA method can all serve effectively as
predictors for these classification tasks. However, their con-
tributions to the accuracy of the corresponding classifiers
vary. To account for statistical variations, we carry out
the Wilcoxon–Mann–Whitney ranks tests to compare the
accuracy level of the best PK-based method with that of
another comparison group in each classification task. Table 5
presents the results of those tests where an “=” sign indi-
cates that the difference in accuracy is either less than 1% or
is not statistically significant; otherwise, a positive/negative
value represents the accuracy gain/loss attained by the
best PK-A method compared to the best method from the
corresponding comparison group.

Comparison with PK using only generic types (PK-G)
PK-A outperforms PK-G across the tested data sets, except
for CM-B, where both methods have the same accuracy.
This shows that application-specific types contribute non-
trivially to the classification power of a provenance graph
kernel, which justifies the extra investment by subject matter
experts introducing application types during the prove-
nance modelling process. In cases where such types are not
available, the performance of PK-G can be considered the
worst-case performance of provenance graph kernels.

Comparison with Graph Kernels If computational/time
cost is not a consideration, we find that the GK-slow group
generally outperforms the GK-fast group (see green bars vs.
red bars in Fig. 6). Compared to the GK-slow group, PK-A
methods, however, yield similar levels of accuracy across
the tested classification tasks exception for MIMIC where
the Graphlet Sampling kernel yields 1% more accurate
classifications (at 243x more time cost) and PG-T where the
best PK-A method is 13% more accurate than the best GK-
slow method. In terms of computation costs, it should be
noted that the best GK-slow methods take 4x to 243x more
time than their PK-A counterparts (see Table 4). Compared
to the GK-fast group, Table 5 shows that PK-A methods
are more accurate in two out of six classification tasks
and perform similarly in the remaining four tasks. Hence,
under time constraints (that disqualify graph kernels in the
GK-slow group), the proposed provenance kernels overall
outperform the tested graph kernels in the GK-fast group.

Comparison with PNA method We also report in Table 5
the accuracy differences between the best PK-A methods
compared to their PNA counterparts across the six classi-
fication tasks. It shows that PK-A methods outperform in
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all tasks with the exception of CM-B where both groups
perform similarly. At the same time, given the significant
penalty in computation cost incurred by the PNA method
in calculating network metrics (80–280 times, see Table 4),
PK-A methods prove to be better candidates for analysing
provenance graphs. Moreover, the PNA method, in some
of the tasks, employs obscure metrics like the average
clustering coefficients predominantly in the trained decision
models, making it a challenge to understand why certain
classification is decided, even with an interpretable model
such as a decision tree classifier.

In addition to good accuracy and time performance, in
the following section, we show how provenance types used
by the proposed provenance kernels can afford us better
interpretability compared to the network metrics employed
by the PNA method.

6 EXPLAINABILITY

In the previous section, Support Vector Machines are used
to learn from the kernels’ feature vectors, which are counts
of provenance types, and perform classification tasks. Tech-
niques such as SVMs, however, are known as black-box
models when considering their ability to provide explana-
tions of their predictions. In this section, we use LIME [62],
short for Local Interpretable Model-Agnostic Explanations,
to illustrate how it can help identify provenance types that
are most influential in classification decisions and, from
those, gain insights into classifiers built on provenance
kernels.

LIME aims to explain the decisions of any classifier
by introducing local perturbations of input data, through
which it learns a linear model which is locally faithful
to the instance to be explained. For example, for tabular
input data, it changes the value of a given feature, tests the
perturbed feature vector with the same classifier, and checks
whether such a change affects the prediction probabilities.
The steeper the decrease in the prediction probability, the
higher the contribution of that feature towards a specific
prediction.

Although provenance types alone do not explain the en-
tirety of a process, they provide practitioners with a tool to
better understand the decision process of graph classifiers.
We outline the steps to explain classification decisions using
provenance kernels as follows.

E1 Important Types Identification: Provenance kernel
is an explicit graph kernel, i.e., we are able to inspect
the feature vector used in the classification of each
given graph. This, in turn, provides us with the set of
provenance types that were present and used in such
predictions. From the explanations for each instance
produced by LIME, we aggregate the importance of
each feature across the entire data set and identify
which provenance types were most influential in a
given classification task.

E2 Instance Retrievability: Once the provenance types
of interest are identified as being associated with a
certain prediction, we are then able to retrieve original
graph instances that contain patterns defined by one of
the identified types. This is done by the subtasks (1)
Graph instance identification: searches which graph has

Table 6: The average importances of provenance type inter-
vals associated with F2,2, F0,5, F1,1 from CM-B (see Table 7
for definitions) as produced by LIME.

Parameter Importance

x1,1 ≤ 2 0.322
0 < x2,2 ≤ 2 0.203

x0,5 ≤ 1 0.0
x2,2 = 0 −0.204
x1,1 > 2 −0.320

a given feature in its feature vector; and (2) Subgraph
retrieval: extracts a subgraph that matches a provenance
type in a given graph instance. Both combined may give
us further insights into why a prediction was made as
well as highlighting all provenance graphs that share
the same provenance type(s).

E3 Instance Description: Once an instance of the inter-
ested pattern is found, we paraphrase such instance
in a natural language by leveraging the descriptive
capabilities of provenance vocabularies.

We illustrate the above steps with the CM-B date set. First,
we split it into a train set and a test set (at a ratio of 8:2).
We then train an SVM classifier on the train set. Following
Definition 3, we denote by xh,y the number of occurrences
of type Fh,y on a given graph, where h is a given depth
and y is a counter for types of that particular depth (e.g.,
types of depth 2 are F2,1, F2,2, F2,3...). For each graph in
the test set, we record the importance of each feature from
LIME-generated explanations. The explanations were set
up in a way such that the number of occurrences of each
type in a particular graph (xh,y) was split into intervals,
acting as a new (binary) feature. For example, in Table 6,
the feature x1,1 ≤ 2 is found to have the highest positive
importance value. This means that if the type F1,1 (see
Table 7) occurs 0, 1 or 2 times in a CM-B provenance
graph, the classifier is likely to decide that the graph is
trusted. The quantification of this association (e.g., 0.322)
is related to the drop in the probability of being considered
trusted when such a feature is artificially removed from
the feature vector. A negative importance value indicates
that a feature is associated with an uncertain decision, as
its removal increases the probability of a trusted outcome.
Note this analysis also allows us to conclude, for example,
that a decision was made based on the absence, rather than
occurrence, of a given provenance type.

Table 7 provides us with the type definitions associated
with each one of the types F1,1, F2,2, F0,5 (E1). Although
F0,5 can simply be paraphrased as ‘a Buiding’, when it
comes to deeper types, however, their natural language
descriptions need to make use of more general terms.
For example, F2,2 can be paraphrased as representing a
‘succession of two derivations from a Route or Building’.
Type descriptions alone, therefore, may not fully capture the
complexity of graph patterns to give the user a broad un-
derstanding of their meaning. For that reason, we propose
the extraction of a subgraph associated with an occurrence
of each one of the influential types in Table 6 (E2). Such
a subgraph may by no means be the only graph pattern
associated with a type but provides the user with a concrete
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Figure 7: An instance of a F1,1 type (left), associated with node UpVote7926.0 and an instance of a F2,2 type (right), associated
with node UpVote12904.0. Note that similar patterns associated with a DownVote would define the same provenance types,
as both positive and negative votes are associated with the same provenance type collabmap:Vote.

scenario of its occurrences. Fig. 7, for instance, depicts two
subgraphs from CM-B representing single instances of types
F1,1 and F2,2. Each is the induced subgraph from all nodes
that are up to distance h, where h is the depth (e.g. 1 or 2)
of the provenance type of its root note (e.g. UpVote7926.0,
or UpVote12904.0). Finally, the retrieved subgraphs can be
paraphrased in a natural language E3. For example, the
following sentence was computationally generated from the
graph on the right of Fig. 7 (i.e., an instance of F2,2):

Route12902.0 was generated by RouteIdentifica-
tion7236, UpVote12904.0 relates to Route12902.0., Up-
Vote12904.0 was generated by RouteIdentification7236.
RouteIdentification7236 used Building2231.0.

In Table 6, the type F1,1 is associated with trusted de-
cisions when appears fewer than two times, and associated
with untrusted decisions if it is featured more frequently.
Note that in this case LIME aggregates the absence of
type F1,1 (i.e, x1,1 = 0) and its single occurrence (i.e.,
x1,1 = 1) in the same interval. In Fig. 7 this type refers
to a vote on a building associated with a verification. A
natural way to interpret this is, since a Vote can be ei-
ther an up or down vote, we can take this to mean that
having a small number of votes likely means that they
were upvotes. This is in line with how the CollabMap
workflow [56]: when there was a consensus with just a few
votes (often upvotes), the Building was declared trusted.
Otherwise, if there was a dispute, more verifications, and
hence votes, were requested, and thus it is more likely
that the Building is deemed uncertain. In a narrative, we
can say that a disputed decision is associated more with
an uncertain decision. Moreover, a contrasting pattern is
presented with the depth-2 type F2,2. In particular, a non-
zero number of occurrences was associated with trusted
decisions, whereas the absence of such type was deemed to
be associated with a uncertain one. This once again is in
line with the application’s workflow: if a Building has not
been declared trusted, no routes are requested from crowd
workers for the building.

Note that the number of votes alone does not offer a
strong explainable power. This is because a vote can be
either associated with a building verification or with a route
identification, which has different implications when under-
standing the trustworthiness of a building. For example,
a high number of votes can be associated with a stronger
likelihood of a building being deemed untrusted if they

Table 7: The provenance type descriptions of types F2,2,
F1,1, and F0,5. The prefix cm: indicates an application-
specific label from the CollabMap domain. cm:RouteID rep-
resents a Route identification type.

Feature Provenance type represented

F1,1 {der, gen}, {act, ent, cm:Building, cm:BuildingVerification}
F2,2 {der, gen}, {der, gen, use}, {act, ent, cm:Building, cm:RouteID}
F0,5 {ent, cm:Building}

are all associated with building verification activities. On
the other hand, the same high number of votes can be
associated with a graph that has few building verification
activities together with several route identification ones,
which means the building was declared as trusted by the
workflow. Such real-world examples exemplify the impor-
tance of provenance types at higher depths as opposed to
graph kernels that simply count the number of occurrences
of each type node label (i.e., a vote in this case). Finally,
the overall importance of the feature F0,5 was determined
to be 0, which implies that the number of buildings offers
no explanatory power to the decision of the classifier. Once
again, this is in line with how the data set was constructed
as Building appears exactly once in each graph.

In summary, through using an explainer, LIME, to build
locally interpretable models for provenance kernel clas-
sifiers, the importance of each of the provenance types,
including its constraints, can be determined, providing the
user with a means to interpret the classifier’s decisions. We
have shown that, in the context of the CollabMap build-
ing classification task, such interpretations reveal the logic
captured from the data by the classifier (and later verified
by us by checking the application’s workflow). Capitalised
on the expressiveness of the provenance vocabulary and
the patterns encoded by provenance types, insights into
the logic of classifiers built on provenance kernels can be
identified by following the steps we outlined above in this
section.

7 CONCLUSIONS AND FUTURE WORK

With the growing adoption of provenance in a wide range of
application domains, the efficient processing and classifica-
tion of provenance graphs have become imperative. To that
end, we introduced a novel graph kernel method tailored
for provenance graphs. Provenance kernels make use of
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provenance types, which are an abstraction of a node’s
neighbourhood taking into account edges and nodes at
different distances from it. A provenance type is associated
with each node for each depth value h. A vector is then pro-
duced for each graph: it counts the number of occurrences of
each (non-empty) provenance type associated with nodes in
this graph up to a given depth h. These feature vectors can
then be effectively employed by standard machine learning
algorithms, such as SVMs and decision trees, as shown in
the previous two sections. The computational complexity
of producing feature vectors for a family of graphs with
a total of M edges is bounded by O(h2M). Note that the
provenance kernel method is applicable to graphs in any
domain as long as both edges and nodes are categorically
labelled.

In Section 5, we compared provenance kernels against
state-of-the-art graph kernels and the PNA method in su-
pervised learning tasks with six data sets of provenance
graphs. We showed that provenance kernels are among the
fastest methods and, among those, they show high, if not
the highest, classification accuracies in the six data sets we
tested. An important benefit brought about by provenance
types is that they can help us understand better how certain
classification is made by an ML model as demonstrated
in Section 6. We provided a sequence of steps to extract
explanations from classification tasks by inspecting the im-
portance of different features, making use of the fact that
provenance types capture narratives from sequential events
in provenance graphs. We thus show how provenance ker-
nels and types may give us further insights into why a
particular graph was classified in a particular way. Also, in
the context of a CollabMap data set, such explanations were
in line with our knowledge with respect to how the graphs
were constructed.

A given provenance type, when considering only PROV
generic node labels, may re-appear in provenance graphs
recorded from different applications. The extent of how
many types overlap across application domains is an open
question. In line with what has been proposed by [19],
an interesting line of future work is to create a library
of types across different domains and investigate whether
there is a correlation between the high occurrence of certain
provenance types and the role they play in classification
tasks. We have proposed a method that takes both node
and edge labels into account, as opposed to node or edge
attributes (such as time, duration, etc). It is an interesting
line of future work to study a modification of our approach
to also take into account real values in edges and nodes.
This could be interesting as some provenance graphs have
duration of activities or other time stamps that could be
used.

As we found that application-specific types are essential
in improving the accuracy of provenance graph kernels (Sec-
tion 5.3) and explaining a classification decision (Section 6),
designing application types to maximise such benefits is a
valuable extension of this work. Moreover, one can study
the use of random Fourier features [63], [64] to address
the challenge of high-dimensional feature vectors. Like the
work proposed in [65], an automated method to gener-
ate natural language descriptions of extracted instances of
provenance types (i.e., small provenance graphs, see Fig. 7)

will further improve the interpretability of classifiers built
on provenance graphs kernels. Furthermore, it is an interest-
ing line of future work to create perturbations in provenance
graphs (e.g., removal of nodes or edges) as means of creating
explanations based on such perturbations. One most note,
however, that not all perturbations of provenance graphs are
valid changes, and violating rules of encoding provenance
may lead to inaccurate explanations.

Finally, as shown in our preliminary investigation (Sec-
tion 5 of the Supplementary Materials), GNNs seem to
be able to classify provenance graphs with high accuracy
(albeit with significantly high time cost). As discussed there,
the research space on GNNs is vast. A follow-on study
to determine which GNN layers and configurations are
suitable to efficiently analyse provenance graphs is another
interesting line of future work.

Code and Data
The data used for this article, along with the associated
experiment code, is publicly available at https://github.
com/trungdong/provenance-kernel-evaluation.
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[28] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in Learning theory and kernel
machines. Springer, 2003, pp. 129–143.

[29] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transac-
tions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24,
2020.

[30] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” AI open, vol. 1, pp. 57–81, 2020.

[31] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, jan
2009. [Online]. Available: http://ieeexplore.ieee.org/document/
4700287/

[32] R. Sato, “A survey on the expressive power of graph neural
networks,” arXiv preprint arXiv:2003.04078.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” 2017.
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